
Design and Experimentation of a Self-Stabilizing Data Collection
Protocol for Vehicular Ad-Hoc Networks – Extended Version

Yoann Dieudonné, Bertrand Ducourthial Sidi-Mohamed Senouci
CNRS Heudiasyc UMR6599 ISAT - Université de Bourgogne
Université de Technologie de Compiègne (UTC) Orange Labs (FTR&D)
{yoann.dieudonne,bertrand.ducourthial}@utc.fr Sidi-Mohammed.Senouci@u-bourgogne.fr

ABSTRACT
In this paper, we present a protocol to collect data within a
vehicular ad hoc network (VANET). In spite of the intrinsic
dynamicity of such network, our protocol simultaneously of-
fers three relevant properties: (1) It allows any vehicle to col-
lect data beyond its direct neighborhood (i.e., vehicles within
direct communication range) using vehicle-to-vehicle com-
munications only (i.e., without passing through any infras-
tructure or one of its components); (2) It tolerates possible
network partitions; (3) It works on demand and stops when
the data collection is achieved. To the best of our knowledge,
this is the first collect protocol having these three character-
istics.

All that is chiefly obtained thanks to a specific tool, namely
Operator ant, borrowed from the self-stabilization area which
confers to our algorithm the nice property to recover by itself
from topology changes. In addition to a theoretical proof of
correctness, our protocol has been implemented and tested
through the Airplug Software Distribution: Road and lab ex-
periments are presented and discussed.

1. INTRODUCTION

1.1 Context
Following the current trend in Automotive Engineering,

motor vehicles are equipped with more and more sensors in
order to improve the safety of the driver and passengers as
well as ride comfort.

Taken individually, local information provided by sensors
gives an imperfect knowledge to cars and to their passen-
gers. However, by comparing information collected from
several vehicles, the knowledge can be built up. In other
terms, by exchanging information and estimations from ve-
hicle sensors and analog computers, information becomes
more accurate and relevant and thus, the confidence level is
increased. For instance, it has been demonstrated [5, 24] that
collaborative localization uncertainty in groups of agents or
vehicles is less compared to the situation where individual
agents estimate their position separately. Various techniques
have been proposed to integrate relative observations, like
maximum likelihood estimation [16], particle filters [20],
Kalman filters [23, 21], and Monte-Carlo simulation. Al-

though the designs of the previous schemes have led to prac-
tical implementations and have demonstrated their effective-
ness in certain settings through extensive simulations or ex-
periments, before doing so, vehicles need to collect data
from the whole network or to a lesser extent in their neigh-
borhood. Through a network operator (NO), we can envis-
age to directly send and receive collected data on a large
scale: Recipients are then vehicles but also the infrastruc-
ture managers and users of cellular networks. Various ap-
plications are possible, such as traffic estimation, average
speed, available parking spaces, etc. While a mere 3G con-
nection can transmit data arising from a single car, it seems
more appropriate to aggregate data before forwarding them.
This modus operandi helps to analyse information from ve-
hicles, to contextually filter and merge them with respect to
different selection criteria. As a result, it becomes possible
to send only useful informations so as to save bandwidth. In
this context, the architecture has to be compounded of a data
collection protocol specific to highly dynamic networks best
known as VANETs (which stands for Vehicular Ad Hoc Net-
works) associated with a protocol for forwarding aggregated
data to the core network of the NO. In this paper, we aim to
focus on the process of collecting data in VANETs.

1.2 Related works
Most of the data collections in vehicular ad hoc networks

are tackled by using a mechanism of dissemination which
is a process whereby each vehicle periodically broadcasts
information about itself. A large number of data dissemina-
tion protocols have been recently proposed within the frame-
work of VANETs [28, 22, 19, 2, 25, 18]. For instance, we
can refer to opportunistic disseminations, such as [28], as
well as geographical disseminations [19]. In the first case,
propagation is performed with the use of opportunistic dif-
fusion of data: In particular, messages are stored in each
intermediate node and forwarded to every encountered node
until the destination is reached. The second one consists in
sending the message to the closest vehicle toward the des-
tination until it reaches it. Likewise, many other types of
dissemination exist: Thereby, we can mention peer-to-peer
[19] and cluster-based dissemination [2]. Notwithstanding,
all the disseminations, and by extension every data collec-
tion relying on them, are generally not upon request. Conse-
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quently, information is recurrently diffused even if it is not
necessary, leading to bandwidth waste. Moreover, since ve-
hicles do not know which data will be relevant, they will tend
to broadcast more than expected.

To circumvent this problem, data collection would have
to issue from a demand started by some initiator. In a fixed
network, such a data collection can be achieved with no dif-
ficulty through a wave algorithm, the PIF algorithm being
certainly the most emblematic example [26]. The PIF algo-
rithm, like most of general wave algorithms [27], works in
two steps –both of them being suggestive of a wave.

The first step corresponds to a broadcast phase started by
a sink which is called an initiator. During this step, the sink
sends a broadcast message to all its neighbors. In particu-
lar, in the context of a data collection, this message has to
contain the types of data to be collected. The neighbor, that
receives the broadcast message for the first time, considers
the node that has sent it as its parent and forwards the broad-
cast message to all its neighbors with the exception of its
parent. Behaving like this, a spanning tree is built.

The second step corresponds to a feedback phase started
by the leaves of the spanning tree. More precisely, when
the leaves receive broadcast messages from all theirs neigh-
bors, they send their own data to their parents as feedback
for the broadcast message. Obviously, data are related to
the types of data which appear in the broadcast message.
The other nodes, which are not leaves, will receive the feed-
back messages with the collected data from their children.
These nodes will join their own data to those of their chil-
dren through a mechanism of aggregation and send them to
theirs parents until the sink has taken in all the aggregated
data of the complete network.

Unfortunately, due to their intrinsic dynamicity, the PIF
algorithm is doomed to failure in dynamic networks such
as VANETs. The deep reason stems from the fact that the
PIF algorithm requires the spanning tree to remain invariant:
However such a property cannot be fulfilled because links
between nodes are subject to incessant breakages.

In [6], the authors bypass the problem by adapting a de-
centralized wave algorithm from [15] to a vehicular network.
Nevertheless, their protocol relies on the assumption that the
network remains permanently connected, otherwise their al-
gorithm would be unable to terminate. In particular, it is
assumed that no node can disappear but, in reality, this fre-
quently occurs in dynamic networks such as VANETs.

1.3 Contribution
Our contribution is threefold:

• Design of a self-stabilization data collection protocol.
We describe a protocol for collecting data in VANETs
using vehicle-to-vehicle communications only. In our
designing, every data collection follows a demand in-
cluding, among others, types of data as well as the
maximal duration and depth for the collect process.
Contrary to [6], it is not required for vehicular net-

works to remain continuously connected. To achieve
this, each vehicle recurrently confronts its local net-
work view with the other views so as to update it by
involving an r-operator. An r-operator is a specific
tool which brings the nice property of self-stabilization
to our algorithm. A self-stabilizing algorithm has the
ability to recover by itself from an inconsistent state
caused by transient failures. Since topology changes
can be viewed as transient failures, our protocol is guar-
anteed to sustain the dynamicity of the vehicular net-
work. In particular, every local view will tend to be
quite accurate in spite of the dynamicity. In the rest of
this paper, we will be led to clarify these notions and
concepts but for more details about self-stabilization
and r-operators, the reader may refer to [14, 3, 13].

• Implementation of our protocol and road experimenta-
tions. We prove that our algorithm named COL can be
practically implemented. In this way, we built a proto-
type using the Airplug Software Distribution (ASD) in
order to test it via real experimentions on road. ASD
is a software suite which allows to develop distributed
protocols suited to dynamic networks and allows to
validate them via field or lab experiments [12, 17].

• Lab experimentations over range of scenarios. We
show that COL can provide significant performances
over a range of wireless communication scenarios. In
different experiments, we varied several parameters no-
tably the network dynamicity and the communication
reliability to demonstrate the robustness of our algo-
rithm.

1.4 Roadmap
The rest of this paper is organized as follows. First, some

preliminaries are given in Section 2. Then, Section 3 intro-
duces our data collection protocol and its proof of correct-
ness. The proof of concept is presented in Section 5. Finally,
we analyse performance evaluations in Section 6 before con-
cluding the paper in Section 7.

2. PRELIMINARIES
In this section, we first introduce the specifications of the

data collection problem considered in this paper. Next, we
present two concepts, namely local network view and Oper-
ator ant, which are used in our protocol in Section 3.

2.1 Collecting data: specifications
There are many sources of data in a vehicular network

that may produce interesting content, providing they have
been gathered, aggregated and analyzed: the infrastructure
itself when it is equipped, the vehicles that embed sensors,
the humans (drivers, passengers, pedestrians...) using spe-
cific devices. To clarify the ideas, we mainly focus on col-
lecting data produced by vehicles, while our algorithm may
apply to other sources of data. The collect will then involve
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inter-vehicle communication. Obviously several collect may
run simultaneously but for sake of simplicity we consider a
single collect, launched by a single vehicle called initiator.

A data collection application can be divided into four phases:

1. A preparing phase;

2. A gathering phase;

3. An aggregating phase;

4. A sending phase.

The first phase consists in elaborating the data to be col-
lected. Indeed, while data can be almost instantaneously
produced by sensors, it may be useful to consolidate it lo-
cally before the collect. Depending on the applications (and
the kind of data), we may compare information from several
sensors, compute a mobile average of the last values, com-
pute the average of the values produced by close cars, and so
on.

The data preparing phase can be either proactive or reac-
tive, meaning that data can be prepared before the beginning
of the collect or at the arrival of the first collect message.
Hence, this phase involves either any vehicle that could be
involved by a collect (proactive) or only those which are in-
volved by the considered collect (reactive).

The collect algorithm can collect data of any type. The
type of data to be used is given by the initiator and is in-
cluded in the collect messages: parameter typedt. For in-
stance, in our experiments, typedt is equal to ident to
collect the id of vehicles or to speed to collect their speed
(the first case allows to compute the density of the vehicles
in a given area, while the second allows to compute the av-
erage speed in a given road).

It is worth noting that, depending on their type, data can be
unstable (e.g., typedt=speed), and can change during the
gathering phase. The collect algorithm should then include
a conflict operator denoted � to deal with the case where a
vehicle receives two different data (or more) coming from a
single vehicle. This operator depends on the application; it
may for instance return the lastest of the values in conflict or
the smallest one, etc.

The second phase consists in gathering the data spread
out in the vehicles to the initiator-vehicle. It is started by
the initiator vehicle and involves necessarily a limited num-
ber of vehicles around the initiator. We limit the number of
vehicles involved by using a maxdst parameter, represent-
ing the maximal distance in number of hops from the ini-
tiator. Indeed, each hop (vehicle-to-vehicle communication)
increases the total duration of the collect as well as the num-
ber of messages in the network; maxdst is then an inter-
esting parameter, impacting directly the performances. Note
that we may use complex data type to limit the collect to a
specific geographical area for instance (e.g., ident of vehicles
in the road r).

Note that, in a dynamic network, defining the termination
of the algorithm using the distance from the initiator is not

sufficient. Indeed, values may change and new vehicles may
appear in the area and contribute to the collect with new val-
ues. Besides the difficulty, it is not always desirable. Indeed,
for quickly meeting requests from vehicles about possible
proximity events such as traffic jams, road covered in snow
or covered in ice, fog, etc., the collect would also have to
be restricted in terms of duration. We then introduce two
parameters: maxdur and maxstb. The first one gives the
maximal duration of the algorithm on each node. The sec-
ond one allows to optimize the duration; it gives the maxi-
mal number of successive stable values produced by a node
before locally ending: if a node always produces the same
value, it could locally end the algorithm before maxdur. By
the way, even if new vehicles enter into the area of collect
defined by maxdst during the collect, they will not delay
the collect because other nodes will stop to propagate these
values after maxdur units of time.

Parameters maxdst, maxdur and maxstb are used all
together. Obviously, some combinations are not pertinent.
For instance, too short values of maxdur may avoid to ex-
plore the network up to maxdst hops, and maxstb should
be smaller than maxdur to be useful. Durations are mea-
sured in multiple of aTimer which is a constant for the du-
ration of a timer.

The third phase begins when the collect is ended. The
initiator can then aggregate the collected data by perform-
ing some computation (e.g., average), depending on the ap-
plication and the type of data. Note that in some cases, it
could be possible to aggregate data during the second phase
(distributed collect). Indeed, if the application consists in
computing the smallest speed of any vehicle in an area, a ve-
hicle could only send the minimum of all the received speed
instead of sending all of them. While this may save space
in messages, we prefer to separate the gathering phase from
the aggregating phase for robustness. Indeed, suppose that a
data is corrupted during the collect of the minimal speed and
becomes null. Then it could become the final result. To the
contrary, our algorithm is able to recover from such transient
faults.

Finally, the fourth phase consists in sending the result to
those who may request it. It is optional because the initiator
vehicle may launch a collect for its own account. It could
also share the result to close vehicles or send it to a server
on the infrastructure. This last case requires a gateway to In-
ternet. Collects for the infrastructure are either push-based
or pull-based. Push-based collects are regularly started by
some predefined initiator vehicles, such as road service ve-
hicles that could be equipped with 3G device. Pull-based
collects are initiated by the infrastructure to obtain informa-
tion on a given area. For instance, the request is sent to a
vehicle through a Road-Side Unit (RSU); the receiving ve-
hicle becomes the initiator. It is not necessarily equipped
with a 3G devices and it will have to discover a gateway to
Internet for sending its result (3G device, RSU...).

In the rest of this paper, we focus on the distributed al-
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gorithm (second phase) able to collect data in the vehicular
network. For more details about the fourth phase, the inquir-
ing reader is referred to [11].

2.2 Local view
Let start by some definitions in the aim of introducing the

local view, which suppose to model the vehicular network
as a dynamic directed graph, that is, a sequence of oriented
graphs evolving in the time.

We define the vicinity of a vehicle v at date t as the set
of vehicles which can directly send a message to v using
the on-board vehicle-to-vehicle wireless device between t−
aTimer and t, where aTimer denotes the timer duration.
Note that v may not be in the vicinity of u while u is in the
vicinity of v.

At a given time t, a vehicular network can be viewed as
a directed graph in which each vehicle is viewed as a vertex
and such that there exists a directed edge from u to v if, and
only if, u is in the vicinity of v at time instant t. In the re-
mainder, G (t) will indicate the graph at Time t (or G when
no ambiguity arises). We indifferently speak about vertex,
node or vehicle for designing the vertices of a graph model-
ing a vehicular network.

As the vehicular network is dynamic, it is modeled by a
sequence of graphs G1, G2, . . . where two consecutive graphs
are not necessary different.

A path in a graph G is a sequence of consecutive directed
edges of G (u0,u1),(u1,u2), . . . ,(un−1,un). The length of
this path is n (number of edges). A dynamic path in a se-
quence of graphs G1, G2, . . . is a sequence of edges (u0,u1),
(u1,u2), . . . ,(un−1,un) such that (u0,u1) belongs to G1, (u1,u2)
belongs to G2, . . . , (un−1,un) belongs to Gn. The length of
this dynamic path is n.

The distance from u to v in a graph G , denoted by dist(u,v),
is the length of the shortest path from u to v. The dynamic
distance from u to v at step k in a sequence of graphs G1,
G2, . . ., denoted by ddist(u,v), is the length of the shortest
dynamic path from u to v among those having the last edge
in Gk.

Let us denote by xv the piece of data in vehicle v which has
to be collected. Let consider a graph G . We call local view
of depth p of vehicle v the list (N0,N1, . . . ,Np) such that, for
all j ∈ {1, . . . , p}, N j is the set of couples (u,xu) satisfying
dist(u,v) = j and N0 = {(v,xv)}. Similarly, in a sequence
of graphs G1, G2, . . ., we call dynamic local view of depth p
at step k of vehicle v the list (N0,N1, . . . ,Np) such that, for
all j ∈ {1, . . . , p}, N j is the set of couples (u,xu) satisfying
ddistk(u,v) = j and N0 = {(v,xv)}. Figure 1 illustrates the
definition of local view.

2.3 Operator Ant
In our protocol, each vehicle periodically updates its lo-

cal view with respect to the local view of its neighbors, by
using Operator ant [14, 13]. This operator belongs to the
family of r-operator [10, 13]. When used for distributed

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���������������
���������������
���������������

���������������
���������������
���������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

(1,a)

(2,b)

(3,c)

(4,d)

(5,e)

(6,f)

(7,g)

(8,h)

Figure 1: Examples of local views. For a
depth of 2, the local view of Vehicule 1 is
({(1,a)},{(2,b),(3,c),(4,d)},{(5,e)}); the local view
of Vehicule 3 is ({(3,c)}, {(1,a),(4,d),(5,e)}, {(2,b),
(6, f ),(8,h),(7,g)}).

computation on networks, these operators have interesting
properties for fault tolerance, providing they fulfill some re-
quirements. By modeling a local algorithm with such an
operator, global properties of the distributed algorithm oper-
ating on the whole distributed system can be stated by simply
checking the algebraic properties of the operator.

Operator Ant has already be defined in previous work [14,
10, 13]. We give here the intuition behind its construction in
order to explain its use for computing local views.

Let S be the set of well formed local views (views with
empty sets Ni or with repetitive couples (x,xv) are discarded
by the nodes at the reception). We consider the operator ⊕
on S that merges two views while deleting needless or repeti-
tive information so that a vehicle appears only once in a local
view. To do so, for each vehicle v, we keep only the cou-
ple (v,xv) having the lowest level i.e., the leftmost. In case
of conflict between two couples (v,xv) and (v,x′v) of same
level, the ambiguity is resolved by using a conflict operator
�, as explained in Section 2.1: only the couple (v,xv� x′v)
is kept. Providing that the binary operator � is associative
(a� (b�c) = (a�b)�c), commutative (a�b = b�a) and
idempotent (a�a = a), we can show that operator⊕ is asso-
ciative, commutative and idempotent on S (note that this is
for instance the case when � gives the latest or the smallest
value produced by a vehicle in case of unstable data).

Since it is associative, commutative and idempotent, op-
erator ⊕ defines an order relation �⊕ on S by: V1 �⊕ V2 ≡
V1⊕V2 = V1. By the way, when using such operator, vehi-
cles computes the smallest view of all those they received,
prefering then small paths from ancestors instead of longer.

Nevertheless, each time a view is sent to a neighbor, its
sets of couples have to be shift to the right because distances
increase by one. This is done by an endomorphism r of S,
that insert an empty set at the beginning of the view: r(V ) =
( /0,N0,N1, . . . ,Np) where V = (N0,N1, . . . ,Np).

Hence, any vehicle v periodically updates its local view
Vv by computing the smallest view among Vv and r(Vu) for
any view Vu sent by a neighbor u since the last local com-
putation. The result operator is named ant; it is defined by:
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ant(Vv,Vu) = Vv⊕ r(Vu). We can show that it is a strictly
idempotent r-operator inducing a partial order relation on
S and the resulting distributed algorithm support transient
faults [14, 10].

Let us take an example, that refers to Figure 1. Suppose
that the view of Vehicule 1 is V1 =({(1,a)},{(2,b),(3,c),(4,d)})
and suppose that it receives the view V3 = ({(3,c)},{(1,a),
(4,d),(5,e)},{(2,b),(6, f ),(8,h),(7,g)}) sent by Vehicule
3. Then Vehicle 1 computes its new local view by ant(V1,V3)=
V1⊕ r(V3). This gives: ({(1,a)},{(2,b),(3,c⊕ c),(4,d)},
{(1,a),(4,d),(5,e)},{(2,b),(6, f ),(8,h),(7,g)}) = ({(1,a)},
{(2,b),(3,c),(4,d)},{(5,e)},{(6, f ),(8,h),(7,g)}).

Finally, to keep views of at most depth p, it is sufficient to
truncate them just after the ant computation. Following the
previous example, if p = 2, the list of Vehicle 1 becomes
then ({(1,a)}, {(2,b),(3,c),(4,d)},{(5,e)}, which is the
result given in Figure 1.

3. COL ALGORITHM DESIGN
In this section, we present our collect algorithm called

COL, corresponding to the second phase in Section 2.1.

3.1 Algorithm Intuition
The intuition underlying the algorithm is simple and we

briefly describe it here (see Algorithm 1 for details). At a
high level, as soon as it is implicated in the collect, every
vehicle periodically broadcasts its local view to all its neigh-
bors. Of course, at the beginning of the data collection, only
the initiator is concerned by the collect. However, during
the process of the propagation of the messages, the number
of concerned vehicles will grow whilst complying the maxi-
mum distance criterion (maxdst).

In the same way, every vehicle periodically recomputes
its own view by applying Operator ant to the received local
views. This recurrent process allows to take into account
possible new vehicles implicated in the collect as well as
possible topology changes due to the dynamic of the net-
work. In particular, obsolete local views will be rectified
thanks to Operator ant and its intrinsic property of self-sta-
bilization.

When the data collection draws to a close, we consider
that the result of the collect corresponds to the local view of
the initiator.

So, to achieve that, our protocol considers two aspects
namely handling the dynamic vicinity as well as collecting
data as such.

3.2 Handling the dynamic vicinity
To handle the instability of the vicinity, each time a node v

receives a message from a node u, it locally grants a lifetime
of maxloss timers to u (lines 17 and 26). In this way, if
ever v does not receive another message from u at the end
of maxloss timers, v will consider u is no longer in its
vicinity. More precisely, after a timer expires, the lifetime of
u will be decremented by one (line 31). When the lifetime

reaches the value of zero, all the data relative to u is erased
from v (line 33).

Algorithm 1: Collect protocol COL, for any node v

1 Starting_action(typedt, maxdst, maxdur, maxstb):
. We supposed a single initiator for sake of simplicity.
Other nodes cannot start the distributed algorithm.

2 if v is not initator or col_active == true then return
3 col_active← true . A collect is now running
4 col_id += 1 . Id of the collect
5 col_initiator← v
6 col_param← (typedt, maxdst, maxdur, maxstb)
7 local_data← item of data of v of datatype typedt
8 local_view← {(v, local_data)}
9 count_dur←0 . Count until maxdur
10 count_stb← 0 . Count until maxstb
11 tab_views← /0 . List of last received views
12 send( col_id, col_initiator, col_param, local_view )
13 start timer with duration aTimer

14 Upon message arrival:
15 receive( rcv_id, rcv_init, rcv_par, rcv_view ) from u
16 if col_active == true and col_id == rcv_id then

. Message for the current collect
17 tab_lifetime[u]← maxloss
18 tab_views[u]← rcv_view . Store the received view
19 else if rcv_id > col_id

. New collect
20 col_active← true . A collect is locally running
21 col_number← rcv_id . Store the collect id
22 col_initiator← rcv_init
23 (typedt, maxdst, maxdur, maxstb)← rcv_par
24 count_dur←0 . Count until maxdur
25 count_stb← 0 . Count until maxstb
26 tab_lifetime[u]← maxloss
27 tab_views[u]← rcv_view . Store the received view
28 start timer with duration aTimer
29 end if

. Other messages are ignored.

30 Upon timer expiration:
. Detecting neighbors disappearance

31 tab_lifetime[u] -= 1 for any u in tab_lifetime
32 for each u such that lifetime[u] == 0 do
33 Delete entry u in tab_lifetime and tab_views
34 end for

. Computing the new local view
35 old_local_view← local_view
36 local_data← item of data of v of datatype typedt
37 local_view← {(v, local_data)}
38 for each u such that tab_views[u] exists do
39 local_view← ant(local_view, tab_views[u])
40 end for
41 Truncate local_view to the first maxdst elements

. Termination detection
42 count_dur += 1
43 if old_local_view and local_view are equivalent then
44 count_stb += 1
45 else
46 count_stb← 0
47 end if
48 col_active← false
49 if col_initiator ∈ local_view then

. Valid view regarding the collect
50 send( col_id, col_initiator, col_param, local_view )
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51 if count_stb 6= maxstb and
count_dur 6= maxdur then

52 restart timer with duration aTimer
53 col_active← true
54 else if col_initiator == v

. End of the collect on the initiator. Aggregating
phase, see Section 2.1)

55 Compute the final result using local_view
56 col_active← false . Allow to start a new collect
57 end if
58 end if

3.3 Collecting data

3.3.1 Starting the collect
As mentionned above, every data collection is triggered

by a single node called the initiator. As soon as the initiator
decides to start a collect, it sends a message in its neighbor-
hood made up of four fields (line 12):

• collect number (col_id);

• identity of the initiator (col_initiator);

• collect parameters (col_param) ;

• its current local view (col_view).

Let us detail these fields. Concerning the identity of the
initiator, it remains here unchanged as stated in Section 2.1
(for sake of simplicity, but several data collection could be
carried out simultaneously). By contrast, the collect number
never ceases to change: it is incremented by one with every
new collect.

Concerning the collect parameters, these are selected by
the initiator and are 4 in number (see Section 2.1): typedt
(datatype to be collected), maxdst (maximal distance from
the initiator for which the collect is desirable), maxdur (lo-
cal maximal duration), maxstb (local maximal duration in
case of stable view).

At the time of the first emission from the initiator, its
vicinity knowledge is reduced to the empty set. In particu-
lar, its local view contains only its identity and its local data.
However, it is to be expected that its local view will expand.

3.3.2 Receiving a message
At the arrival of a message (line 15), node v looks into the

received collect number rcv_id so as to check whether the
message is relevant or not. To do so, rcv_id is compared to
col_id, the number of the last collect that v has taken part in.

In case v is currently involved in a collect (col_active is
true on v), if rcv_id and col_id match, then the received
message has to be taken into account for the current collect
(line 16).

In case v is currently involved in a collect and receives
a message belonging to a new collect (rcv_id > col_id, see
line 19), it resets its data regarding the collect. This may

happen in case the initiator ends the collect before v (for in-
stance, it loosed connectivity with its neighbors and obtain
rapidly a stable result).

In case v is not currently involved in a collect (col_active
is false), the message sent by u is taken into account by v
only if it belongs to a new collect: rcv_id > col_id (line 19).
By the way, a node which has localy terminated the cur-
rent collect will discard messages from this collect (and from
older collects).

When the message is accepted, the sender view is stored
(lines 18 and 27). When the receiving node enters into a new
collect, the parameters are stored and the controlling vari-
ables are reset (lines 20-25), and the timer is started (line 28).

3.3.3 Periodic computation
Node v computes a new local view at timer expiration.

The new view of v depends only on views sent by neigh-
bor nodes considered still present in its vicinity (i.e., nodes
for which lifetime is not null, as explained in Section 3.2).
To do so, Operator ant introduced in Section 2.3 is used
(line 39). The resulting new local view is truncated to the
first maxdst elements in order to respect the distance from
the initiator (line 41).

The last step consists in detecting the termination of the
collect (lines 42-58). The number of computations since
the beginning of the current collect is increased (line 42);
the number of successive computations with the same re-
sult is increased or reset, depending on the successive views
(lines 43-47) . Then, col_active is reset (line 48) and will be
set to true only if the collect has to continue (line 53).

If the initiator is not in the new local view, then Node v is
not concerned by the collect: it is too far from the initiator.
In that case, Node v no longer participates in the data collec-
tion. In the converse case, the message is broadcasted in the
neighborhood.

If the number of computations (count_dur) has not reached
maxdur and the number of identical successive views (cou-
nt_stb) has not reached count_stb (line 51), the timer is
restarted for a new computation (line 52). In the converse
case, the node has locally terminated. If it is the Initiator,
the final result is obtained. Phases 3 and 4 can begin, as de-
scribed in Section 2.1: aggregating the collected data, send-
ing the result.

4. CORRECTNESS
The COL algorithm is able to build local views in the net-

work. In this section, we explain the interest of local views,
both for the collect and the correctness. Next, we give the in-
tuition of the correctness. Then we give the sketch of proof,
by focusing first on the case where our algorithm runs for-
ever (i.e., no termination test), before studying the general
case (with termination).

4.1 Correctness intuition
We explain with examples how our algorithm builds local
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views of the network. Figures 2 to 4 illustrate the building
of the local views at the beginning of the COL algorithm in
a simple network composed of three nodes. Thanks to ant
operator, local views are updated after each timer expiration
to converge to the final result in Figure 4.

(1,a)

(2,b) (3,c)

({(1,a)})

Figure 2: Vehicle 1 is the initiator. At the beginning of
the collect, its local view is reduced to itself.

(1,a)

(2,b) (3,c)

({(1,a)})

({(3,c)},{(1,a)})({(2,b)},{(1,a)})

Figure 3: Vehicles 2 and 3 receive a message from 1.
From now, all the vehicles are implicated in the data
collection. Each of them builds its local view before re-
broadcasting it.

(1,a)

(2,b) (3,c)

({(2,b)},{(1,a),(3,c)})

({(1,a)},{(2,b),(3,c)})

({(3,c)},{(1,a),(2,b)})

Figure 4: One timer expiration later, every vehicle up-
dates its local view with respect to the other received local
views.

Figures 5 to 7 illustrate the fact that the local views are
corrected after a topology change: the connection between
Nodes 2 and 3 in Figure 4 no longer exists in Figure 5. This
change is detected when the lifetime of the missing neighbor
(initialized at maxloss at each message arrival, and decre-
mented at each timer expiration) reaches 0.

An example illustrating the fact that the local views are
eventually corrected following the entry of a new vehicle,
namely Vehicle 4, is depicted in Figure 8 to 12. Vehicle 4
will rapidly build its local view thanks to views received
from neighbors. Reciprocally, its neighbors will incorporate
its data, that will propagate from one hop per timer expira-
tion.

(1,a)

(2,b) (3,c)

({(2,b)},{(1,a),(3,c)})

({(1,a)},{(2,b),(3,c)})

({(3,c)},{(1,a),(2,b)})

Figure 5: A topology change arises. Vehicle 2 and 3 are
no longer neighbors. They can no longer directly com-
municate.

(1,a)

(2,b) (3,c)

({(1,a)},{(2,b),(3,c)})

({(2,b)},{(1,a)}) ({(3,c)},{(1,a)})

Figure 6: After maxloss timers, Vehicle 2 and 3 elimi-
nate respectively 3 and 2 from their respective local view.

(1,a)

(2,b) (3,c)

({(1,a)},{(2,b),(3,c)})

({(2,b)},{(1,a)},{(3,c)}) ({(3,c)},{(1,a)},{(2,b)})

Figure 7: Two timer expirations later, all the local views
become correct again.

(1,a)

(2,b) (3,c)

({(1,a)},{(2,b),(3,c)})

({(2,b)},{(1,a)},{(3,c)}) ({(3,c)},{(1,a)},{(2,b)})

(4,d)

Figure 8: A new node, namely Vehicle 4, appears inside
the network. It is not yet implicated in the collect. How-
ever, being a neighbor of Vehicle 3, it receives a message
from it.
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(1,a)

(2,b) (3,c)

({(1,a)},{(2,b),(3,c)})

({(2,b)},{(1,a)},{(3,c)}) ({(3,c)},{(1,a)},{(2,b)})

(4,d)

({(4,d)}{(3,c)},{(1,a)},{(2,b)})

Figure 9: Vehicle 4 is now implicated in the collect. It
computes its local view according to the one sent by Ve-
hicle 3. Once completed, it broadcasts its local view to
Vehicle 3.

(1,a)

(2,b) (3,c)

({(1,a)},{(2,b),(3,c)})

({(2,b)},{(1,a)},{(3,c)})

(4,d)

({(4,d)}{(3,c)},{(1,a)},{(2,b)})

({(3,c)},{(1,a),(4,d)},{(2,b)})

Figure 10: Vehicle 3 updates its local view and sends it to
Vehicle 1.

(1,a)

(2,b) (3,c)

({(2,b)},{(1,a)},{(3,c)})

(4,d)

({(4,d)}{(3,c)},{(1,a)},{(2,b)})

({(3,c)},{(1,a),(4,d)},{(2,b)})

({(1,a)},{(2,b),(3,c)},{(4,d)})

Figure 11: Vehicle 1 in its turn updates its local view and
broadcasts it.

(1,a)

(2,b) (3,c)

(4,d)

({(4,d)}{(3,c)},{(1,a)},{(2,b)})

({(3,c)}{(4,d),(1,a)},{(2,b)})

({(1,a)}{(3,c),(2,b)},{(4,d)})

({(2,b)}{(1,a)}{(3,c)}{(4,d)})

Figure 12: All the local views are now correct.

4.2 Self-stabilization property
Self-stabilization is a concept of fault tolerance in dis-

tributed system first introduced by Dijkstra in [8]. Several
equivalent definitions exist in literature but we can remem-
ber the following one:

DEFINITION 4.1 (SELF-STABILIZATION). [9] An algo-
rithm A is said to be self-stabilizing if and only if:

1. (Convergence). Starting from any state, it is guaran-
teed that A will allow the system to eventually reach a
correct state.

2. (Closure). Given that the system is in a correct state, it
is guaranteed to stay in a correct state while executing
A , provided that no fault happens.

In particular, a self-stabilizing algorithm has the ability to
recover by itself from an inconsistent state caused by tran-
sient failures. It could then run without any initialization.

By transient failure, we intend unwanted disturbing of
limited duration in the time, such as packet loss, volatile
memories modification or messages alteration. It is worth
noting that a topology change leads to an inconsistency in the
neighborhood knowledge (and local views) of all impacted
nodes. By the way, any topology change can be modeled as
a transient failure and self-stabilization algorithms have the
nice property to support the network dynamic.

However, in order to fulfil its self-stabilizing requirement,
an algorithm should be able to run until the convergence hap-
pens (which should occur in finite time). As our algorithm
termination is determined by the maxstb and maxdur pa-
rameters, the COL algorithm may not have enough time to
recover from a transient failure if those parameters would
not have well set. Then, we first consider the properties of
the COL algorithm during an infinite execution:

PROPERTY 4.2. The COL protocol is self-stabilizing and
builds a local view of the network centered on the initiator,
providing it runs forever.

This property is due to the fact that the aforementioned
collect protocol is mainly based on Operator ant which con-
fers to COL the property of self-stabilization. Indeed, Oper-
ator ant leads to a large range of self-stabilizing tasks, such
as computing local views, in a kind of distributed systems
which admit bounded communication links. As stated in [7],
since wireless communications can be viewed as bounded
links and seeing that topology or data changes can be viewed
as transient failures, the nice property of self-stabilization
can be directly extended to the present framework.

Basically, the Operator ant relies both on the Operator ⊕
and the endomorphism r (see Section 2.3). Roughly speak-
ing, the first one tends to decrease the values as the second
one tends to increase the values, leading to a stable state sat-
isfying the specification.

Indeed, as ⊕ defines an order relation, the local computa-
tions performed by each node can be assimilated as a kind
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of minimum computation. By the way, any too large un-
legitimate value is eventually withdrawn from the network.
Moreover, since the r-operator is strictly idempotent, it sat-
isfies x ≺ r(x). Hence, each time a value progresses in the
network, it is incremented by the endomorphism. By the
way, any too small unlegitimate value is eventually with-
drawn from the network. Only the values which are regu-
larly broadcasted are kept in the network, meaning that local
nodes output will eventually be legitimate.

Note that, in the special case where there are some data
changes (e.g., vehicle speeds), old values are replaced with
new values provided that the conflict operator is wisely cho-
sen. Some examples of the self-stabilizing features are de-
picted in Figures 2 to 12.

4.3 Dynamic network
The self-stabilizing property of the COL algorithm en-

sures that it can support any transient failure providing it has
enough time to converge. However, in order to obtain a result
in bounded time, the COL algorithm includes a termination
detection using both maxdur and maxstb. Property 4.2
will be fulfilled only for wisely chosen values of such pa-
rameters.

Nevertheless, even when the convergence has not be rea-
ched, the algorithm outputs a dynamic local view centered
on the initiator:

PROPERTY 4.3. The COL protocol builds a dynamic lo-
cal view of the network, centered on the initiator (providing
there is no corruption of volatile memories).

Indeed, if u is in the view of Initiator v, then u has been
sent by a neighbor of v during the previous timer. If such
ancestor had u in its view, then either it is u itself or one of
its neighbors outputs u a timer before... In any case, a dy-
namic path exists between u and v in the sequence of graphs
modeling the evolving topology.

Besides its interest for self-stabilizing properties, local vi-
ews present other several advantages, from the point of view
of data collection algorithm.

First, it includes the data to be collected. Second, it in-
cludes a topological representation of these data, rich infor-
mation that can be exploited by the aggregating phase. Let
us give some examples among others. (i) A confident coef-
ficient could be affected to the result depending on the size
of the local view, on the redundancy of some values inside
the view, and so on. (ii) Divergent data could be filtered
using a distance-based filter, giving more relevance to close
data compared to the farthest in case of doubt. (iii) The ini-
tiator could consolidate the collected data by computing a
weighted average, where weights depend on the distance to
the initiator.

5. ROAD EXPERIMENTS
To establish a proof of concept of our protocol, some road

experiments were conducted using the Airplug Software Dis-
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Figure 13: A node in the airplug architecture.

tribution (ASD). ASD is a software suite which is dedicated
to the design of distributed applications in highly dynamic
ad hoc networks, such as vehicular networks. In particular, it
allows field as well as lab experimentations. In this section,
before focusing on the proof of concept, we describe the
software component of ASD, namely Airplug-road, which
is especially devoted to road experiments.

5.1 Architecture for road experiments

5.1.1 Process-based architecture
In order to obtain a light, portable and robust distributed

framework, the Airplug architecture relies on the facilities
given by standard operating systems: resources allocation,
process scheduling, real-time management... This avoids
any redundancy between the framework and the operating
system, and allows to take benefit of any improvement in
these fields (including real time management). It is expected
a portable POSIX operating system with process manage-
ment and memory protection for robustness issue.

The framework comprises a core program –called Airplug-
road– one for each mobile node, that runs in a standard pro-
cess on top of the operating system. By not including any
part of the framework in the kernel nor in the applications,
the independence with the operating system as well as with
the applications programming is enforced.

The Airplug architecture accepts either local or distributed
applications. A local application does not have any interac-
tion with remote applications. A distributed application is
composed of several instances of the same program, running
in different mobile nodes, and exchanging messages. Local
applications as well as local instances of the distributed ap-
plications run in separate processes with their own memory
space. This enforces the applications independence as well
as the reliability: An application may be bogus with very
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few impact on the rest of the system. Moreover, this allows
to subcontract the scheduling of the applications as well as
the real-time management: The framework should just set
the priorities regarding parametric rules (eg. context-aware
heuristics) and the operating system does the rest.

All these processes are launched by airplug, which cre-
ates descendant processes, called plugged processes. By this
way, airplug is easily informed of the problems of an appli-
cation by catching the related signals sent by the OS to the
parent process (eg. abnormal termination).

5.1.2 Inter-process communications
To fit with the asynchronous opportunistic network, the

protocol is based on asynchronous messages passing. In or-
der to minimize the requirements for the applications devel-
opment, inter-process communications are done with mes-
sages through standard IO. Indeed, any process owns by de-
fault a standard input stdin, a standard output stdout (and
a standard error output stderr). This functionality is then
supported by any programming language, and it gives no re-
quirement on the application programming. The standard IO
are sufficient to perform the inter-process local communica-
tions, and it can easily be extended to ensure inter-process
remote communications (between distant nodes). Moreover,
such a communication scheme allows easy standalone use
of the applications (without airplug) and it permits to reuse
existing applications.

For each plugged process, standard input and output are
redirected from and to airplug via bi-directional connected
communication links called in the following local links (see
Figure 1). There is one local link per plugged process. By
this way, each time a plugged process writes on its stan-
dard output, airplug will receive the data via the related lo-
cal link. And each time airplug writes on a local link, the
related plugged process will receive the data. The airplug
program scrutinizes the local links to receive the data from
the plugged process and forward them to the destinations
(local or distant process specified by the sender).

Hence airplug represents a kind of "bus" between all the
plugged processes. The network interfaces are also con-
nected to this bus so that any application on the top of an
airplug instance in the vicinity are connected to a common
applicative bus. This bus can be extended by means of multi-
hops communications. It is important to note that this bus
is very simple and can then be efficiently implemented by
avoiding any kind of unwanted processes synchronization.
This simplicity is well adapted to the opportunistic networks:
it provides quick communication with very few common
conventions and without any global management (eg. ser-
vices directory); it then supports rapid extension or reduction
depending on the nodes movements. Note that, in addition to
the efficiency, this communication scheme preserves the lan-
guage independence: The more adapted programming para-
digm can be chosen to build an airplug compatible applica-
tion i.e., object oriented or not, multi-threaded or not, inter-

preted or compiled and so on. In a nutshell, the language
independence allows to take benefit of any language and
compiler improvement, and to remain open to new future
programming paradigm.

5.1.3 Networking integration
In the Airplug architecture, the network interfaces are ac-

cessed through airplug, and are called plugged interfaces:
An example is depicted in Figure 13. The plugged interfaces
are managed as the plugged processes, to the exception that
they are connected to airplug via some sockets. Hence, the
network is addressed by the applications in the same way
they address a message to another application, simply by
writing to their standard output. The airplug program re-
ceives the data sent by the plugged processes and sends them
to the desired plugged interface through the related socket.

By using several plugged interfaces, several network de-
vices can simultaneously be accessed, an several protocols
can be used. For instance, sockets may be open for the Blue-
tooth interface and other to some WiFi interfaces. Some of
them could use the TCP/IP stack while some other could per-
form broadcast over UDP. By allowing to use the network
stacks included in the kernels, airplug ensures the compat-
ibility with any existing network such as Internet, and can
take benefit of any improvement of such protocols. For in-
stance, IPv6 may be used by including it in the kernel, and
by opening the corresponding socket.

But this architecture is also open to any new communi-
cation scheme. By using raw sockets, the link layer can
directly be accessed through a plugged interface. This can
advantageous be used to broadcast in the neighborhood by
avoiding the IP and UDP headers. Moreover, this allows to
implement in user space new protocols inside plugged pro-
cesses. Such a process will receive the messages from the
applications that want to send their data using the new pro-
tocol. It will then send messages through a raw socket to the
remote hosts: An example of that is depicted in Figure 14.
Hence, any by-pass of the Internet stack as well as cross-
layering solution can be designed by simply using the inter-
applications facilities of airplug.

5.2 Proof of Concept: Road Experiments
In addition to the theoritical proof described in the pre-

vious section, we aim to establish a proof of concept. In
the context of VANET, a proof of concept essentially con-
sists of implementations and road experiments in order to
demonstrate its feasibility in practice. By definition, a proof
of concept may be not complete and is usually restricted to
a small number of scenarios. So, to demonstrate the feasi-
bility of our algorithm, we have implemented our protocol
in Tcl/Tk in order to test it on road through airplug. The
resulting application is simply named COL.

For this purpose, five cars have been mobilized. Within
each of them, exactly one PC (Dell mini-9 Model DP118)
under Ubuntu (v8.04 Hardy Heron) and running Airplug as
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Figure 14: Integration of a new protocol in the airplug
architecture. Here the HOP protocol is used by the ALT
application.

Figure 15: Road experiments used experimental vehicles
of the lab as well as standard cars only equipped with the
mini Dell PCs.

Figure 16: Experimental platform composed of mini Dell
under Linux, external WiFi cards, external antennas and
GPS.

well as the COL application was installed (see Figure 16).
All the PCs are equipped with an external WiFi card with
USB connectors (Alfa AWUS036EH), allowing to connect
an antenna on the roof of the vehicles (D-LINK ANT24-
0700, 2.4 GHz, 7 dBi, omni-directional).

For this realization study, we have considered a scenario
corresponding to a single convoy with five vehicles travel-
ling at 90 km/h. The inter-vehicle distance is around 50 me-
ters, corresponding to the expected security distance (equiv-
alent to 2 seconds). Within the convoy, the car situated at the

head of the convoy is the initiator: it successively launches
several data collection according to the following parame-
ters.

1. aTimer = 1000 ms

2. maxloss = 2

3. typedt = Ident (i.e., collect of the vehicles’ identity)

4. maxdst = 4

5. maxdur = 10

Parameters aTimer and maxloss are set in an arbitrary
way but they are however large enough so that messages can
be exchanged and so that the local views are not updated
in an untimely manner. Concerning the datatype to collect,
we just focus on the identities of the vehicles. The maximal
number of hops (maxdst) is fixed to 4 in order to involve all
the vehicles in the data collection notably the tail of the con-
voy. The maximal duration (maxdur) is fixed to 10 timer
expirations: In this way, the duration of the collect is long
enough to possibly allow time for possible data from the tail
of the convoy to reach the initiator.

In the aforementioned scenario, the initiator has always
been able to collect all the identities including its own, de-
spites the dynamic of the vehicular network. Consequently,
these experimentations constitute the proof of concept of our
protocol, showing the feasibility of COL in practice, and
complementing the theoritical proof described previously.
These experiments lead to a movie, available online [1].

6. PERFORMANCE EVALUATIONS
So, what of the performance evaluations? As a matter

of fact, our algorithm does not really lend itself to any per-
formance evaluation for two main reasons. The first comes
from the fact that several time parameters such as duration of
the collect, maximum distance, etc. are left to the discretion
of the initiator: However, these parameters directly affect
the performance of our algorithm. The second stems from
the fact that our protocol is qualitatively different from the
existing protocols: In particular, it supports possible network
partitions contrary to existing studies.

Nevertheless, to get the measure of our data collection,
COL was tested in lab by replaying some real road condi-
tions through Emulator Airplug-emu [4]. Airplug-emu is a
component of ASD which allows to emulate vehicular ad
hoc networks. In particular, it may reproduce road experi-
ments without further developments of the studied protypes
tested via Airplug-road. So, in the remainder, we analyse
the impact of three different criteria on COL, communica-
tion reliability, timer duration and MAXLOSS.

6.1 Airplug-emu
Overview. Airplug-emu aims to perform realistic exper-

iments of protocols and applications designed for vehicular
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networks. With Airplug-emu, the applications and protocols
to be studied run on independent processes as they do dur-
ing road experiments, without any modification. Airplug-
emu handles all the communications, either intra- or inter-
vehicle, by using the shell facilities since applications run
in independent processes and communications rely on stan-
dard input/output (refer to Subsection 5.1). This application
is written in Tcl/Tk and runs on a Linux PC. Several com-
puters can be used in order to introduce real links instead of
emulated ones (hybrid emulation).

Scenario. The scenario of the test is described in an XML
file, that indicates the number of vehicles, the size of the
geographic area, the applications and protocols running in
each vehicle, the trajectory of each vehicle, and so on. The
trajectories are real positions obtained from our several field
experimentations. However, Airplug-emu can accepts other
input for node mobility, produced by traffic generators. The
Network Simulator format is also accepted.

Link. EMU reads the position of each node in the net-
work with a user-defined frequency. The communication
links are determined by the wireless communications range
(user-defined) and a random factor hazard which plays the
role of link reliability. If the distance between two vehicles
is less than range × hazard, then there is a link. The haz-
ard (uniform random law) permits to add (or not) a variation
in the antenna scope (to avoid perfect discs). It is also pos-
sible to use node-specific ranges, which is useful for some
VANET security studies.

Network emulation. For each vehicle, EMU launches the
applications and protocols specified in the XML file with
the related command line, so that they run in independent
processes. The standard input of these processes are con-
nected to a reception process RCP and their standard out-
put are connected to a directional process DIR. The first one
receives all the inter- and intra-communications. The sec-
ond one forwards the messages either for local applications
or for neighbor vehicles through the gateway process GTW.
The RCP process is a Tcl shell script that forwards intra-
vehicle messages. The GTW process is implemented with
the cat command. As previously explained, it is used to
change the inter-vehicle connections without packet losses
(if a perfect network is desired): first GTW is frozen, next
the inter-vehicle links are changed, and then GTW is un-
frozen and the messages waiting in its input are sent without
losses. The DIR process is a Tcl shell script that analyzes the
header of the messages sent by the local applications in order
to determine whether they should be sent locally (keyword
LCH) or to neighbor cars (keyword AIR) or both (keyword
ALL).

Realistic emulation. All inter-process links including in-
ter-vehicle links (from a GTW process on vehicle A to a RCP
process on vehicle B) rely on shell named pipes. In order to
reproduce the conditions of communication observed on the
road, the RCP process can delay or lose inter-vehicle mes-
sages. It then accepts two parameters (delay and lossrate);

Figure 17: Emulation of the COL application on a convoy
of 13 vehicles generated by the GPS application from a
real GPS trajectory obtained on road N131, Compiègne,
France. We can see the COL application running on Ve-
hicle 7, as well as parameters of Airplug− emu and COL.

Such values can be measured during road experiments. The
dynamics of the network can be varied thanks to a dynamic
parameter in order to study the robustness of protocols in
function of different levels of network dynamics. This pa-
rameter increases or decreases the vehicle locations updates
whereas messages always take the same time to reach their
destination.

6.2 Evaluation Results
For the tests in the laboratory, the mobility of the vehicles

has been emulated through Airplug-emu, by using logs of
real GPS positions, obtained on the road. More precisely,
we consider a scenario in which 13 vehicles runs in Com-
piègne streets, a city in France. Each of them run COL and
one of them plays the role of the initiator (refer to Figure 17).
The communication range is fixed at 250 meters. The inter-
vehicle distance varies between 200 and 350 meters. So,
since inter-vehicle distance may be greater than communica-
tion range then the convoy is not always connected. Within
the convoy, the car situated at the middle of the convoy is
the initiator which successively launches data collections ac-
cording to the following parameters:

1. typedt = ident (collecting the vehicles’ identities)

2. maxdst = 6

3. maxdur = 20

The maxdst parameter is fixed at 6 in order to involve
all the vehicles in the data collection notably the tail and the
head of the convoy. The maxdur parameter is fixed at 20
timer expirations: In this way, the duration of the collect is
long enough to possibly allow time for possible data from
the tail as well as from the head of the convoy to reach the
initiator when the convoy remains connected.
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Figure 18: Percentage of collected data as a function of
reliability of communication links, for a convoy scenario

In this section we propose to study the impact of three
parameters namely the link reliability (through the emula-
tor), the timer duration (aTimer) and the initial lifetime of
a neighbor (maxloss).

Link reliability.
To study the impact of the reliability of communication

links on the number of collected data, for each level of re-
liability we run 50 simulations and we recorded the average
percentage of collected data. The parameters maxloss and
aTimer are respectively fixed at 3 and 2000 ms. Figure 18
plots the average percentage of collected data as a function
of the reliability of communication links. This figure shows
that the more reliable the links are, the greater the percent-
age of collected data is. So, the figure illustrates that our data
collection protocol still works even when there are lost mes-
sages. Note that, due to recurrent partitions of the network
(dynamic topology), we can notice that it is possible that all
the data are not collected even if the reliability is maximal.

Parameter aTimer.
Figure 19 plots the average percentage of collected data

as a function of Parameter aTimer according to five lev-
els of reliability namely 0.1, 0.3, 0.5, 0.7 and 1. Parameter
maxloss is fixed at 3. As depicted in Figure 19, our ex-
periments shows that the shorter aTimer is, the greater the
percentage of collected data is. The main reason stems from
the fact that a short duration allows to terminate more data
collections before a topology change occurs than a long du-
ration.

Parameter maxloss.
To study the impact of maxloss on the number of col-

lected data, for each maxloss ∈ {1, . . . ,10}, we run 50
simulations and we recorded the average percentage of col-
lected data. Reliability and duration are respectively fixed at
1 and 2000 ms. As a result, when maxloss is fixed at 1,
the initiator collects no data except its own identity: Indeed
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Figure 19: Percentage of collected data as a function of
timer duration aTimer, for a convoy scenario

in this case and according to Algorithm 1, all the received
data are always deleted because each time the timer expires,
all the neighbors reach a lifetime of zero. On the other hand,
when maxloss≥ 2 the average number of collected data re-
mains relatively static. The main reason comes from the fact
that the scenario is not dynamic enough and consequently a
maxloss= 2 is sufficient to collect all the data in our sce-
nario.

However, that is no longer the case through a less stable
scenario allowing more dynamicity. Indeed, we tested the
impact of maxloss via a scenario which consists of two
convoys with opposite directions that repeatedly cross each
other on a circular route. Due to their opposite directions, the
two convoys are repeatedly disconnected and reconnected.
As a result, the greater maxloss is, the greater the percent-
age of collected data is.

6.3 Discussion
Lab experiments highligh the effect of varying some pa-

rameters. So, it seems judicious to adapt these parameters
according to the context and the desired type of collected
data.

For instance, in a low dynamic network, it may be enough
to fix maxloss at 2 because each neighborhood tends to
remain relatively stable. On the other hand, in a very dy-
namic network, it seems appropriate to increase the value of
maxloss so that to save as many data as possible from ve-
hicles which have been in the neighborhood at least once.
However, a very high maxloss prevents from maintaining
the data up to date: This is a problem when the desired data
are subject to fluctuations (e.g., speeds or positions). To cir-
cumvent the problem, timer duration aTimer may be re-
duced.

7. CONCLUSION
In this paper, we proposed a protocol which collects infor-

mation using inter-vehicle communications only, i.e., with-
out using infrastructure or one of its components. The pro-
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posed protocol is mainly based on a specific tool borrowed
from the self-stabization area, namely Operator ant, which
confers to our protocol the nice property of supporting the
dynamicity. In particular, it is not required for vehicular
networks to remain connected. We have implemented the
proposed protocol and tested it via the Airplug middleware
which allows field and lab experiments. So, road experi-
ments confirmed that COL is able to support network discon-
nections contrary to existing protocols. Road experiments
have been done with a convoy of 5 mobile vehicles in which
they did not change place inside the convoy. However, the
connections were dynamic due to experimental conditions.
Via lab experiments, we have showed that COL still works
even in the presence of frequent disconnections caused by
dynamicity or a low level of reliability of communication
links. We also highlighed how to partially circumvent the
disconnections for instance by increasing the value of neigh-
bor lifetime maxloss or by decreasing the value of the
timer duration aTimer. As a future work, we would like
consider COL as a basic protocol for designing more com-
plex applications in vehicular networks. In particular, our
protocol could be the basis of some kind of multi-criteria
link-state routing protocol.
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