
COL: a Data Collection Protocol for VANET

Yoann Dieudonné, Bertrand Ducourthial, Sidi Mohammed Senouci

Abstract— In this paper, we present a protocol to collect data
within a vehicular ad hoc network (VANET). In spite of the
intrinsic dynamic of such network, our protocol simultaneously
offers three relevant properties: (1) It allows any vehicle
to collect data beyond its direct neighborhood (i.e., vehicles
within direct communication range) using vehicle-to-vehicle
communications only (i.e., the infrastructure is not required);
(2) It tolerates possible network partitions; (3) It works on
demand and stops when the data collection is achieved. To the
best of our knowledge, this is the first collect protocol having
these three characteristics.

All that is chiefly obtained thanks to a specific tool, namely
Operator ant, borrowed from the self-stabilization area which
confers to our algorithm the nice property to recover by itself
from topology changes. In addition to a theoretical proof of
correctness, our protocol has been implemented and tested
through the Airplug Software Distribution: Road and lab
experiments are presented and discussed.

I. INTRODUCTION

A. Context

Following the current trend in Automotive Engineering,
motor vehicles are equipped with more and more sensors in
order to improve the safety of the driver and passengers as
well as ride comfort.

Taken individually, local information provided by sen-
sors gives an imperfect knowledge to cars and to their
passengers. However, by comparing information collected
from several vehicles, the knowledge can be built up. Some
works have begun on the diagnosis or the collaborative
perception among vehicles. In other terms, by exchanging
information and estimations from vehicle sensors and analog
computers, information becomes more accurate and relevant
and thus, the confidence level is increased. For instance, it
has been demonstrated [1], [2] that collaborative localization
uncertainty in groups of agents or vehicles is less com-
pared to the situation where individual agents estimate their
position separately. Various techniques have been proposed
to integrate relative observations, like maximum likelihood
estimation [3], particle filters [4], Kalman filters [5], [6],
and Monte-Carlo simulation. Although the design of the
previous schemes have led to practical implementations and
have demonstrated their effectiveness in certain settings

This work has been supported by Orange Labs (FTR&D), France.
Y. Dieudonné was with Université de Technologie de Compiègne and

is now at Université de Picardie Jules Vernes, 80000 Amiens, France.
Yoann.Dieudonne@u-picardie.fr

B. Ducourthial is with Lab. Heudiasyc UMR CNRS-UTC, Uni-
versité de Technologie de Compiègne, 60200 Compiègne, France.
Bertrand.Ducourthial@utc.fr

S.-M. Senouci was with Orange Labs and is now with the Institut
Supérieur de l’Automobile et des Transports, Université de Bourgogne,
France. Sidi-Mohammed.Senouci@u-bourgogne.fr

through extensive simulations or experiments, before doing
so, vehicles need to collect data from the whole network
or to a lesser extent in their neighborhood. Through a
network operator (NO), we can envisage to directly send
and receive collected data on a large scale: Recipients are
then vehicles but also the infrastructure managers and users
of cellular networks. Various applications are possible, such
as traffic estimation, average speed, available parking spaces,
etc. While a mere 3G connection can transmit data arising
from a single car, it seems more appropriate to aggregate
data before forwarding them. This modus operandi helps to
analyze information from vehicles, to contextually filter and
merge them with respect to different selection criteria. As a
result, it becomes possible to send only useful information
so as to save bandwidth. In this context, the architecture
has to be compounded of a data collection protocol specific
to highly dynamic networks best known as VANET (which
stands for Vehicular Ad Hoc Networks) associated with a
protocol for forwarding aggregated data to the core network
of the NO. In this paper, we aim to focus on the process of
collecting data in VANET.

B. Related works

Most of the data collections in vehicular ad hoc networks
are tackled by using a mechanism of dissemination which
is a process whereby each vehicle periodically broadcasts
information about itself. A large number of data dissem-
ination protocols have been recently proposed within the
framework of VANET [7], [8], [9], [10], [11], [12]. For
instance, we can refer to opportunistic dissemination, such
as [7], as well as geographical dissemination [9]. In the first
case, propagation is performed with the use of opportunistic
diffusion of data: In particular, messages are stored in each
intermediate node and forwarded to every encountered node
until the destination is reached. The second one consists
in sending the message to the closest vehicle toward the
destination until it reaches it. Likewise, many other types of
dissemination exist: Thereby, we can mention peer-to-peer
[9] and cluster-based dissemination [10]. Notwithstanding,
all the dissemination protocols, and by extension every data
collection relying on them, are generally not upon request.
Consequently, information is recurrently diffused even if it is
not necessary, leading to bandwidth waste. Moreover, since
vehicles do not know which data will be relevant, they will
tend to broadcast more than expected.

To circumvent this problem, data collection would have
to issue from a demand started by some initiator. In a
fixed network, such a data collection can be achieved with
no difficulty through a wave algorithm, the PIF algorithm

being certainly the most emblematic example [13]. The PIF
algorithm, like most of general wave algorithms [14], works
in two steps –both of them being suggestive of a wave.

The first step corresponds to a broadcast phase started by
a sink which is called an initiator. During this step, the sink
sends a broadcast message to all its neighbors. In particular,
in the context of a data collection, this message has to contain
the types of data to be collected. The neighbor, that receives
the broadcast message for the first time, considers the node
that has sent it as its parent and forwards the broadcast
message to all its neighbors with the exception of its parent.
Behaving like this, a spanning tree is built.

The second step corresponds to a feedback phase started
by the leaves of the spanning tree. More precisely, when the
leaves receive broadcast messages from all theirs neighbors,
they send their own data to their parents as feedback for the
broadcast message. Obviously, data are related to the types of
data which appear in the broadcast message. The other nodes,
which are not leaves, will receive the feedback messages with
the collected data from their children. These nodes will join
their own data to those of their children through a mechanism
of aggregation and send them to theirs parents until the sink
has taken in all the aggregated data of the complete network.

Unfortunately, due to their intrinsic dynamic, the PIF
algorithm is doomed to failure in dynamic networks such
as VANET. The deep reason stems from the fact that the
PIF algorithm requires the spanning tree to remain invariant:
However such a property cannot be fulfilled because links
between nodes are subject to incessant breakages.

In [15], the authors bypass the problem by adapting a
decentralized wave algorithm from [16] to a vehicular net-
work. Nevertheless, their protocol relies on the assumption
that the network remains permanently connected, otherwise
their algorithm would be unable to terminate. In particular,
it is assumed that no node can disappear but, in reality, this
frequently occurs in dynamic networks such as VANET.

C. Contribution

In this paper, we describe a protocol for collecting data
in VANET using vehicle-to-vehicle communications only. In
our design, every data collection follows a demand including,
among others, types of data as well as the maximal duration
and depth for the collect process. Contrary to [15], it is
not required for vehicular networks to remain continuously
connected (the network can temporarily split). To achieve
this, each vehicle recurrently confronts its local network
view with the other views so as to update it by involving
an r-operator. An r-operator is a specific tool which brings
the nice property of self-stabilization to our algorithm. A
self-stabilizing algorithm has the ability to recover by itself
from an inconsistent state caused by transient failures. Since
topology changes can be viewed as transient failures, our
protocol is guaranteed to sustain the dynamic of the vehicular
network. In particular, every local view will tend to be quite
accurate in spite of the network dynamic.

We proved that our algorithm named COL can be practi-
cally implemented. In this way, we built a prototype using

the Airplug Software Distribution (ASD) in order to test
it via real experimentions on road. ASD is a software
suite which allows to develop distributed protocols suited
to dynamic networks and allows to validate them via field
or lab experiments [17], [27]. In addition to that, we tested
our protocol over several ranges of wireless communication
scenarios by varying several parameters notably the network
dynamic and the communication reliability to demonstrate
the robustness of our algorithm.

Due to the lack of space several proofs and experiments
are omitted. However, a full version of the paper is available
on-line. In addition, a pedagogical movie relates the field
experiments [18], [19].

D. Roadmap

The rest of this paper is organized as follows. First,
some preliminaries are given in Section II. Then, Section III
introduces our data collection protocol. Finally some field
and lab experiments are presented in Section IV before
concluding the paper in Section V.

II. PRELIMINARIES

In this section, we first introduce the specifications of
the data collection problem considered in this paper. Next,
we present two concepts, namely local network view and
Operator ant, which are used in our protocol in Section III.

A. Collecting data: specifications

A data collection application can be divided into four
phases namely, 1) a preparing phase, 2) a gathering phase, 3)
an aggregating phase and 4) a sending phase. In this paper,
we focus only on the distributed algorithm (second phase)
able to gather data in the vehicular network. For more details
about Phases 1, 3 and 4 the inquiring reader is referred to
[18], [20], [21].

The gathering phase consists in gathering the data spread
out in the vehicles to a given one, called initiator. It is
started by the initiator vehicle and involves necessarily a
limited number of vehicles around the initiator. Obviously
several concurrent collects from different initiators could run
simultaneously but to simplify the algorithm presentation, we
consider a single collect, launched by a single initiator.

We limit the number of vehicles involved by using a
maxdst parameter, representing the maximal distance in
number of hops from the initiator. Indeed, each hop (vehicle-
to-vehicle communication) increases the total duration of the
collect as well as the number of messages in the network;
maxdst is then an interesting parameter, impacting directly
the performances. Note that we may use complex data type
to limit the collect to a specific geographical area for instance
(e.g., identity of vehicles in the road r).

Note that, in a dynamic network, defining the termination
of the algorithm using the distance from the initiator is not
sufficient (values may change and new vehicles may appear
in the area and contribute to the collect with new values).

Besides the difficulty, it is not always desirable. Indeed,
for quickly meeting requests from vehicles about possible

proximity events such as traffic jams, road covered in snow
or covered in ice, fog, etc., the collect would also have to
be restricted in terms of duration. We then introduce two
parameters: maxdur and maxstb. The first one gives the
maximal duration of the algorithm on each node. The second
one allows to optimize the duration; it gives the maximal
number of successive stable values produced by a node
before locally ending: if a node always produces the same
value, it could locally end the algorithm before maxdur. By
the way, even if new vehicles enter into the area of collect
defined by maxdst during the collect, they will not delay
the collect because other nodes will stop to propagate these
values after maxdur units of time.

Parameters maxdst, maxdur and maxstb are used all
together. Obviously, some combinations are not pertinent.
For instance, too short values of maxdur may avoid to
explore the network up to maxdst hops, and maxstb
should be smaller than maxdur to be useful. Durations are
measured in multiple of aTimer which is a constant for the
duration of a timer (see hereafter).

The type of data to be collected is given by the initiator and
is included in the collect messages: parameter typedt. For
instance, in our experiments, typedt is equal to ident to
collect the id of vehicles or to speed to collect their speed
(the first case allows to compute the density of the vehicles in
a given area, while the second allows to compute the average
speed in a given road). It is worth noting that, depending on
their type, data can be unstable (e.g., typedt=speed), and
can change during the gathering phase. The collect algorithm
should then include a conflict operator denoted � to deal
with the case where a vehicle receives two different data (or
more) coming from a single vehicle. This operator depends
on the application; it may for instance return the latest of the
values in conflict or the smallest one, etc.

B. Local view

At a given time t, a vehicular network can be viewed as
a directed graph in which each vehicle is viewed as a vertex
and such that there exists a directed edge from u to v if,
and only if, v can send a message to u at time instant t.
In the remainder, G (t) will indicate the graph at Time t (or
G when no ambiguity arises). As the vehicular network is
dynamic, it is modeled by a sequence of graphs G1, G2, . . .
where two consecutive graphs are not necessarily different.
A dynamic path in a sequence of graphs G1, G2, . . . is a
sequence of directed edges (u0,u1), (u1,u2), . . . ,(un−1,un)
such that (u0,u1) belongs to G1, (u1,u2) belongs to G2, . . . ,
(un−1,un) belongs to Gn. The length of this dynamic path is n.
The distance from u to v in a graph G , denoted by dist(u,v),
is the length of the shortest path from u to v. The dynamic
distance from u to v at step k in a sequence of graphs G1,
G2, . . ., denoted by ddistk(u,v), is the length of the shortest
dynamic path from u to v among those having the last edge
in Gk. Let us denote by xv the piece of data in vehicle v which
has to be collected. Let consider a graph G . We call local
view of depth p of vehicle v the list Vv = (N0,N1, . . . ,Np)
such that, for all j ∈ {1, . . . , p}, N j is the set of couples

(u,xu) satisfying dist(u,v) = j and N0 = {(v,xv)}. Similarly,
in a sequence of graphs G1, G2, . . ., we call dynamic local
view of depth p at step k of vehicle v the list (N0,N1, . . . ,Np)
such that, for all j∈{1, . . . , p}, N j is the set of couples (u,xu)
satisfying ddistk(u,v) = j and N0 = {(v,xv)}.

C. Operator Ant

In our protocol, each vehicle periodically updates its local
view with respect to the local view of its neighbors, by using
Operator ant [22], [23]. This operator belongs to the family of
r-operator [24], [23]. When used for distributed computation
on networks, these operators have interesting properties for
fault tolerance, providing they fulfill some requirements. By
modeling a local algorithm with such an operator, global
properties of the distributed algorithm operating on the whole
distributed system can be stated by simply checking the
algebraic properties of the operator.

Operator Ant has already be defined in previous work [22],
[24], [23]. We give here the intuition behind its construction
in order to explain its use for computing local views.

Let S be the set of well formed local views (views with
empty sets Ni or with repetitive couples (x,xv) are discarded
by the nodes at the reception). We consider the operator
⊕ on S that merges two views while deleting needless or
repetitive information so that a vehicle appears only once in
a local view. To do so, for each vehicle v, we keep only the
couple (v,xv) having the lowest level i.e., the leftmost. In case
of conflict between two couples (v,xv) and (v,x′v) of same
level, the ambiguity is resolved by using a conflict operator
�, as explained in Section II-A: only the couple (v,xv� x′v)
is kept. Providing that the binary operator � is associative
(a� (b� c) = (a�b)� c), commutative (a�b = b�a) and
idempotent (a� a = a), we can show that operator ⊕ is
associative, commutative and idempotent on S (note that this
is for instance the case when � gives the latest or the smallest
value produced by a vehicle in case of unstable data).

Since it is associative, commutative and idempotent, op-
erator ⊕ defines an order relation �⊕ on S by: V1 �⊕
V2 ≡ V1⊕V2 = V1. By the way, when using such operator,
vehicles compute the smallest view of all those they received,
preferring then small paths from ancestors instead of longer.

Nevertheless, each time a view is sent to a neighbor, its
sets of couples have to be shift to the right because distances
increase by one. This is done by an endomorphism r of S,
that inserts an empty set at the beginning of the view: r(V)=
(/0,N0,N1, . . . ,Np) where V = (N0,N1, . . . ,Np).

Hence, any vehicle v periodically updates its local view
Vv by computing the smallest view among Vv and r(Vu)
for any view Vu sent by a neighbor u since the last local
computation. The result operator is named ant; it is defined
by: ant(Vv,Vu) =Vv⊕r(Vu). We can show that it is a strictly
idempotent r-operator inducing a partial order relation on
S and the resulting distributed algorithm supports transient
faults [22], [24]. Note that, to keep views of at most depth p,
it is sufficient to truncate them just after the ant computation.

III. COL ALGORITHM DESIGN

In this section, we present our collect algorithm called
COL, corresponding to the second phase in Section II-A.

A. Algorithm Intuition

The intuition underlying the algorithm is simple and we
briefly describe it here (see Algorithm 1 for details). At
a high level, as soon as it is implicated in the collect,
every vehicle periodically broadcasts its local view to all its
neighbors. Of course, at the beginning of the data collection,
only the initiator is concerned by the collect. However, during
the process of the messages propagation, the number of
concerned vehicles will grow whilst complying the maximum
distance criterion (maxdst).

In the same way, every vehicle periodically recomputes
its own view by applying Operator ant to the received local
views. This recurrent process allows to take into account
possible new vehicles implicated in the collect as well
as possible topology changes due to the dynamic of the
network. In particular, obsolete local views will be rectified
thanks to Operator ant and its intrinsic property of self-
stabilization.

When the data collection draws to a close, the result
corresponds to the local view of the initiator.

So, to achieve that, our protocol considers two aspects
namely handling the dynamic vicinity and collecting data.

B. Handling the dynamic vicinity

To handle the instability of the vicinity, each time a node v
receives a message from a node u, it locally grants a lifetime
of maxloss timers to u (lines 15 and 23). In this way, if
ever v does not receive another message from u at the end
of maxloss timers, v will consider u is no longer in its
vicinity. More precisely, after a timer expires, the lifetime
of u will be decremented by one. When the lifetime reaches
the value of zero, all the data relative to u is erased from v
(lines 28-30).

Algorithm 1: Collect protocol COL, for any node v

1 Starting action(typedt, maxdst, maxdur, maxstb):
. Starting the collect on the initiator

2 col state ← active . A collect is now running
3 col initiator ← v
4 col param ← (typedt, maxdst, maxdur, maxstb)
5 local data ← item of data of v of datatype typedt
6 local view ← {(v, local data)}
7 count dur ←0 . Count until maxdur
8 count stb ← 0 . Count until maxstb
9 tab views ← /0 . List of last received views
10 send(col initiator, col param, local view)
11 start timer with duration aTimer

12 Upon message arrival:
13 receive(rcv init, rcv par, rcv view) from u
14 if col state == active then

. Node has already been reached by the collect
15 tab lifetime[u] ← maxloss
16 tab views[u] ← rcv view . Store the received view
17 else if col state 6= terminated

. Node enters into the collect
18 col state ← active
19 col initiator ← rcv init

20 (typedt, maxdst, maxdur, maxstb) ← rcv par
21 count dur ← 0 . Count until maxdur
22 count stb ← 0 . Count until maxstb
23 tab lifetime[u] ← maxloss
24 tab views[u] ← rcv view . Store the received view
25 start timer with duration aTimer
26 end if

. Messages are ignored when the node has leaved the collect.

27 Upon timer expiration:
. Detecting neighbors disappearance

28 tab lifetime[u] -= 1 for any u in tab lifetime
29 for each u such that lifetime[u] == 0 do
30 Delete entry u in tab lifetime and tab views
31 end for

. Computing the new local view
32 old local view ← local view
33 local data ← item of data of v of datatype typedt
34 local view ← {(v, local data)}
35 for each u such that tab views[u] exists do
36 local view ← ant(local view, tab views[u])
37 end for
38 Truncate local view to the first maxdst elements

. Termination detection
39 count dur += 1
40 if old local view and local view are equivalent then
41 count stb += 1
42 else
43 count stb ← 0
44 end if
45 col state ← terminated
46 if col initiator ∈ local view then

. Valid view regarding the collect
47 send(col initiator, col param, local view)
48 if count stb 6= maxstb and

count dur 6= maxdur then
49 restart timer with duration aTimer
50 col state ← active
51 else if col initiator == v

. End of the collect on the initiator. Aggregating phase,
see Section II-A)

52 Compute the final result using local view
53 end if
54 end if

C. Collecting data

1) Starting the collect: Every data collection is triggered
by a single node called the initiator. We consider here a single
collect to simplify. Nevertheless the algorithm can easily be
extended to allow several concurrent or successive collects.

As soon as the initiator decides to start a collect, it
sends a message in its neighborhood made up of three
fields (line 10): Identity of the initiator (col initiator); Collect
parameters (col param) ; Its current local view (local view).

The collect parameters are selected by the initiator and
are 4 in number (see Section II-A): typedt (datatype to
be collected), maxdst (maximal distance from the initiator
for which the collect is desirable), maxdur (local maximal
duration), maxstb (local maximal duration in case of stable
view).

At the time of the first emission from the initiator, its
vicinity knowledge is reduced to the empty set. In particular,
its local view contains only its identity and its local data.
However, it is to be expected that its local view will expand.

2) Receiving a message: At the arrival of a message
(line 13), in case v has already been reached by the collect,
the view of the sender is stored (line 16). In the converse
case, we have to check whether the node has not yet been
reached by the collect, or has been reached but has already
terminated (line 17). If it is the first reception of a message
of the collect, the parameters are stored and the variables are
initialized (lines 18-22); the timer is then started (line 25).

3) Periodic computation: Node v computes a new local
view at timer expiration. The new view of v depends only
on views sent by neighbor nodes considered still present in
its vicinity (i.e., nodes for which lifetime is not null, as
explained in Section III-B): lines 28-31 delete entries for
nodes that did not sent a message recently.

The new view is computed using Operator ant introduced
in Section II-C (line 36). The resulting new local view is
truncated to the first maxdst elements in order to respect
the distance from the initiator (line 38).

The last step consists in detecting the termination of the
collect (lines 39-54). The number of computations since the
beginning of the current collect is increased (line 39); the
number of successive computations with the same result
is increased or reset, depending on the successive views
(lines 40-44) . Then, col state is set to terminated (line 45)
and will be set to active only if the collect has to continue
(line 50).

If the initiator is not in the new local view (line 46),
then Node v is not concerned by the collect: it is too far
from the initiator. In that case, Node v no longer participates
in the data collection. In the converse case, the message
is broadcast in the neighborhood (line 47). This allows to
prevent excessive messages in the network, propagated by
nodes that left the collection area.

If the number of computations (count dur) has not reached
maxdur and the number of identical successive views (cou-
nt stb) has not reached count stb (line 48), the timer is
restarted for a new computation (line 49). In the converse
case, the node has locally terminated. If it is the Initiator,
the final result is obtained. Phases 3 and 4 can begin (see
Section II-A): aggregating the collected data, sending the
result.

D. Sketch of proof

A self-stabilizing algorithm has the property to recover
from transient faults [25]. More details about correctness can
be found in [18].

Property 3.1: The COL protocol is self-stabilizing and
builds a local view of the network centered on the initiator,
providing it has enough time to converge.

This property is due to the fact that the aforementioned
collection protocol is mainly based on Operator ant which
confers to COL the property of self-stabilization. Indeed, Op-
erator ant leads to a large range of self-stabilizing tasks, such
as computing local views, in a kind of distributed systems
which admit bounded communication links. As stated in [26],
since wireless communications can be viewed as bounded
links and seeing that topology or data changes can be viewed

as transient failures, the nice property of self-stabilization can
be directly extended to the present framework.

The self-stabilizing property of the COL algorithm ensures
that it can support any transient failure providing it has
enough time to converge. However, in order to obtain a result
in bounded time, the COL algorithm includes a termination
detection using both maxdur and maxstb. Nevertheless,
even when the convergence has not be reached, the algorithm
outputs a dynamic local view centered on the initiator:

Property 3.2: The COL protocol builds a dynamic local
view of the network, centered on the initiator (providing there
is no corruption of volatile memories).

These properties ensure that the COL protocol always
returns a valid dynamic local view. Moreover it supports
transient faults when the parameters are well chosen.

IV. ROAD AND LAB EXPERIMENTS

Some road and lab experiments were conducted using the
Airplug Software Distribution (ASD) [17], [27]. Full details
can be found in [18]. A short movie is also available on [19].

A. Proof of Concept: Road Experiments

To demonstrate the feasibility of our collect protocol, we
have tested Algorithm 1 via some road experiments after
implementing it into a Tcl/Tk Airplug application (see [19]
for screenshot movies). For this purpose, five cars have been
mobilized. Within each of them, exactly one PC (Dell mini-
9 Model DP118) under Ubuntu and running the Airplug
core program as well as the COL application was installed.
All the PCs are equipped with an external WiFi card with
USB connectors (Alfa AWUS036EH), allowing to connect
an antenna on the roof of the vehicles (D-LINK ANT24-
0700, 2.4 GHz, 7 dBi, omni-directional).

Our experiments were conclusive: the COL algorithm
is operational in practice for collecting data issued from
vehicles. Moreover we confirmed the formal validation: data
are collected despite network dynamic and disconnections,
to the contrary of previous known algorithms (that we also
implemented for comparison purpose). See [18] for details.

B. Lab experiments

For lab tests, the mobility of the vehicles has been emu-
lated through Airplug-emu [27] in order to study many road
scenarios and parameters, with more vehicles. We varied sev-
eral parameters such as the reliability of the communication
links, aTimer, maxloss, etc.

The reliability of the communication links is measured
by dividing the number of successful communications over
the total number of communications. Airplug-emu allows to
vary such a parameter in order to replay conditions observed
on the road or to study what would happen in case of poor
network conditions. Figure 1 shows that the more reliable
the links are, the greater the percentage of collected data is.
This experiment shows that our data collection protocol still
works in presence of many messages lost due to the dynamic.

To study the impact of maxloss on the number of
collected data, for each maxloss ∈ {1, . . . ,10}, we run

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

20

30

40

50

60

70

Reliability [0−1]

P
er

ce
nt

ag
e

of
 c

ol
le

ct
ed

 d
at

a
(%

)

Fig. 1. Percentage of collected data as a function of links reliability

50 simulations and we recorded the average percentage of
collected data. Reliability and duration are respectively fixed
at 1 and 2000 ms. As expected, when maxloss= 1, the
initiator collects no data except its own because in this case,
according to Algorithm 1, all the received data are deleted
before computation. On our scenarios with low dynamic,
we observed that maxloss= 2 allowed to collect all the
data. However, that is no longer the case through a less
stable scenario. Indeed, we tested the impact of maxloss
via a scenario which consists of two convoys with opposite
directions that repeatedly cross each other on a circular
route. Due to their opposite directions, the two convoys are
repeatedly disconnected and reconnected. As a result, the
greater maxloss is, the greater the percentage of collected
data is.

To conclude all these experiments either on the road or
on the emulator, i) the COL algorithm is able to collect data
even in case of high network dynamic; ii) parameter aTimer
depends mainly on the density of vehicles and a value of
1 s is convenient for almost all scenarios; iii) parameter
maxloss depends mainly on the network dynamic and a
value of 3×aTimer (3 s) is a reasonable choice in practice.

V. CONCLUSION

In this paper, we proposed a distributed embedded protocol
which collects information produced by vehicles using inter-
vehicle communications only. It is based on the operator ant
allowing to construct a local view of the network and thus,
to collect data in spite of the topology changes. A formal
proof is available for its convergence and robustness.

Our protocol has been compared during road tests with
previous known algorithms, showing our contribution: it can
collect data even on dynamic networks subject to discon-
nection and messages losses. Complementary experiments
were conducted on a network emulator [27] under several
road scenarios. Parameters influence has been discussed and
pertinent values have been determined for practical cases.

This protocol has been used in an experiment consisting
in collecting the average speed of a convoy of vehicles on
a web server, by combining it with an Internet connection
discovery [21] (see movie and screenshot on-line at [19]).
Future work will consist in combining our protocol with on

board sensors and data fusion algorithms [20] to increase the
perception of a vehicle and build new ITS applications.

REFERENCES

[1] S. Capkun, M. Hamdi, and J.-P. Hubaux, “GPS-free positioning in
mobile ad hoc networks,” Cluster Computing, vol. 5, no. 2, pp. 157–
167, 2002.

[2] S. Roumeliotis and I. Rekleitis, “Propagation of uncertainty in co-
operative multirobot localization: Analysis and experimental results,”
Autonomous Robots, vol. 17, no. 1, pp. 41–54, July 2004.

[3] E. Karami and M. Shiva, “Maximum likelihood MIMO channel
tracking,” in VTC, 2004, pp. 876–879.

[4] N. A. M. Efatmaneshnik, A. T. Balaei and A. Dempster, “A modified
multidimensional scaling with embedded particle filter algorithm for
cooperative positioning of vehicular networks,” in IEEE International
Conference on Vehicular Electronics and Safety, 2009.

[5] R. Parker and S. Valaee, “Vehicular node localization using received-
signal-strength indicator,” in IEEE TVT, vol. 56, 2007, pp. 3371–3380.

[6] Z. Mo, H. Zhu, K. Makki, N. Pissinou, and M. Karimi, “On peer-
to-peer location management in vehicular ad hoc networks,” Interna-
tional Journal of Interdisciplinary Telecommunications and Network-
ing (IJITN), vol. 1, no. 2, pp. 28–45, 2009.

[7] H. Wu, R. M. Fujimoto, R. Guensler, and M. Hunter, “Mddv: a
mobility-centric data dissemination algorithm for vehicular networks,”
in Vehicular Ad Hoc Networks, 2004, pp. 47–56.

[8] T. Nadeem, S. Dashtinezhad, C. Liao, and L. Iftode, “Trafficview:
traffic data dissemination using car-to-car communication,” Mobile
Computing and Communications Review, vol. 8, no. 3, pp. 6–19, 2004.

[9] U. Lee, E. Magistretti, B. Zhou, M. Gerla, P. Bellavista, and A. Cor-
radi, “Efficient data harvesting in mobile sensor platforms,” in PerCom
Workshops, 2006, pp. 352–356.

[10] L. Bononi and M. D. Felice, “A cross layered mac and clustering
scheme for efficient broadcast in vanets,” in IEEE Internatonal Con-
ference on Mobile Adhoc and Sensor Systems, 2007, pp. 1–8.

[11] I. Salhi, M. O. Cherif, and S.-M. Senouci, “A new architecture for
data collection in vehicular networks,” in ICC, 2009, pp. 1–6.

[12] U. Lee and M. Gerla, “A survey of urban vehicular sensing platforms,”
Computer Networks, vol. 54, no. 4, pp. 527–544, 2010.

[13] A. Segall, “Distributed network protocols,” IEEE Transactions on
Information Theory, vol. 29, no. 1, pp. 23–34, 1983.

[14] G. Tel, Introduction to Distributed Algorithms. Cambridge University
Press, 1994.

[15] S.-H. Chen and T.-L. Huang, “A wave algorithm for mobile ad hoc
networks,” in Workshop on Algorithms and Computational Molecular
Biology co-located with ICS, 2002.

[16] S. Finn, “Resynch procedures and a fail-safe network protocol,” IEEE
Transactions on Communications, vol. 27, no. 6, pp. 840–845, 1979.

[17] B. Ducourthial and S. Khalfallah, “A platform for road experiments,”
in VTC Spring, 2009.

[18] Y. Dieudonné, B. Ducourthial, and S.-M. Senouci, “Design and experi-
mentation of a self-stabilizing data collection protocol for vehicular ad-
hoc networks, extended version,” Lab. Heudiasyc UMR CNRS UTC
6599, Université de Technologie de Compiègne, Tech. Rep., 2010.

[19] Airplug website. [Online]. Available: https://www.hds.utc.fr/airplug
[20] V. Cherfaoui, T. Denoeux, and Z. Cherfi, “Distributed data fusion:

application to confidence management in vehicular networks,” in Proc.
of FUSION 2008, Cologne, Germany, 2008.

[21] B. Ducourthial and F. Elali, “A light architecture for opportunistic
vehicle-to-infrastructure communications,” in ACM International Sym-
posium on Mobility Management and Wireless Access, 2010.

[22] B. Ducourthial and S. Tixeuil, “Self-stabilization with r-operators,”
Distributed Computing, vol. 14, no. 3, pp. 147–162, 2001.

[23] B. Ducourthial, S. Khalfallah, and F. Petit, “Best-effort group service
in dynamic networks,” in SPAA, 2010, pp. 233–242.

[24] B. Ducourthial, “r-semi-groups: A generic approach for designing
stabilizing silent tasks,” in 9th Stabilization, Safety, and Security of
Distributed Systems (SSS’2007), 2007, pp. 281–295.

[25] S. Dolev, Self-Stabilization. MIT Press, 2000.
[26] S. Delaët, B. Ducourthial, and S. Tixeuil, “Self-stabilization with r-

operators revisited.” in Journal of Aerospace Computing, Information,
and Communication, 2006.

[27] A. Buisset, B. Ducourthial, F. E. Ali, and S. Khalfallah, “Vehicular
networks emulation,” in 19th International Conference on Computer
Communication Networks (ICCCN), 2010.

