

Cooperative alert generation and propagation in vehicular networks Cooperative Mobility for the Service of the Future

B Ducourthial with D. Bloquel, S. Bonnet, V. Cherfaoui and T. Fuhrmann

> Sorbonne universités Université de Technologie de Compiègne UMR CNRS UTC 7253 Heudiasyc

> > Decembre 2016

Agenda

Lancian de la constitución

Comosef French pilo

Team Pilot

Aim Archited

Framewo Hardwar

Fusio

Example Distributed a

Coommun

Strategy V2V

onclusio

1 Introduction

2 Pilot in Compiègne

3 Distributed data fusion

4 Cooperative communication architecture

6 Conclusion

4 □ →
4 □ →
4 □ →
4 □ →
5 □ →

Introduction

heudiasvc

1 Introduction

Comosef French pilot Team

2 Pilot in Compiègne

- Oistributed data fusion

< A > **4 ∃ →** < ≣ → 1

Comosef

heudiasyc

1 Introduction

Comosef

French pilot

4 🗇 ▶ < ≣ →

4 ∄ →

1

Comosef project

Cooperative Mobility for the Service of the Future

Comosef Erench pi

Pilot

Architec

Framewor

Fusio

Data fusio

Distributed Properties

Coommu

Strategy

V2V

Conclusio

European Celtic Plus project

- Coordinator: Pekka Eloranta
- 9 million euros, 94 person-years
- 7 countries, 21 partners
 - 11 pilots

- HITEC Luxembourg S.A.
 Entreprise des Postes et Telecommunications Luxembourg
- Technical University of Cluj-Napoca
- AROBS Transilvania Software

4 ∄ →

French consortium

Comosef

French pi

Pilot

Architectu Framework

Fusio

Data fusion Example Distributed all Properties

Coommuni

V2V

onclusio

- Viveris Technologies
 CAN bus decoding, embedded architecture
- Thales Communication and Security Optimizing data diffusion from RSU, network coding
- Université de Technologie de Compiègne CNRS Heudiasyc 7253 Cooperative alert generation and propagation in VANET

Compiègne

Technologies

Introductio

Comosef

French pilot Team

Pilo

Architect Framewor

Hardware

Fusio

Example Distributed

Distributed Properties

Coommu

Strategy V2V

heudiasyc

1 Introduction

Comosef

French pilot

[eam

< = / < = / = = /

=) Q (~

French pilot

Ducourthial

French pilot

Pilo

Aim

Archite

LI---

Hardwa

Fusi

Data fus

Example

Distributed Properties

Coomini

V2V

Conclusion

- Inputs from CAN bus of vehicles
- Distributed data fusion
- Alert propagation to vehicles/infrastructure

Team

heudiasyc

1 Introduction

French pilot

Team

Université de Technologie de Compiègne CNRS Heudiasyc

Comosef French pilo

Pilot Aim

Architector Framework

Fusio

Data fusion Example Distributed al

Coommuni

Stratami

V2V

Conclusio

heudiasvc

Université de Technologie de Compiègne
 ~4500 students, master degree (engineer diploma), PhD

http://www.utc.fr

- One of the first French engineering school for computer science
- Close to Paris and Charles de Gaulle airport
- Heudiasyc lab from the UTC & CNRS Equipex Robotex, Labex MS2T

 Dynamic networks team https://airplug.hds.utc.fr

_ ⊒ } ⊒ \

■

Université de Technologie de Compiègne

Team approach

Comosef French pilo Team

Pilo

Architecti Framewor

Fusio

Example
Distributed al
Properties

Coommun

Strategy

V2I

Conclusio

neudiasyc

• Dynamic networks are differents

Very short communication timer

Unknown neighbors

• Example:

Confidence in the information

Security

Data sharing, data collect

Messages routing

Impact

Protocol design

Modeling and proofs

Embedded architecture

Evaluation methodology

• Our tools:

Airplug Software Distribution

Communicating embedded disposals

https://www.hds.utc.fr/airplug

Ducourt

Université de Technologie de Compiègne

Research projects

ntroduct

Comosef French pilo Team

Pilot

Architect Framewo Hardware

Fusio

Data fusion Example Distributed a Properties

Coommun

V2V V2I

Conclusio

 Collecting water meters data using vehicles Grant Aceda with Amiens city

 Cooperative architecture for smart cities Agreement with Compiègne city

 Cooperation in a fleet of drones FUI Airmès (I. Fantoni)

 Modeling and proofs in dynamic networks Regional grant Toredy

• European Celtic-Plus project Comosef (2013-2016)

 Cooperative perception for road safety ANR Percoive (A. Victorino)

 Co-operative Systems for Road Safety European project SafeSPOT (M. Shawky)

 Data gathering from VANET to infrastructure Industrial grant FTR&D
 Distributed applications for dynamic networks

Regional grant Toredy 2007-2010

Network services for com. between mobiles objects
Industrial grant Orange lab 2004-2008

les 2016-2017

2015-

2015-2018

2015-2018

2008-2011

2006-2010

2008-2010

UTC/CNRS Heudiasyc

Scientific contributions

Team

heudiasvo

Dynamic p-graphs	[Ad Hoc Networks 2016]
Detecting icy roads	[IEEE ITS 2016]
Adaptive inter-messages delay	[WiMob 2016]
Robustness of distributed data f	usion [SRDS 2016]
Mobile measure of the pollution	[IWCMC 2015]
Cooperative approach near RSU	[IWCMC 2014]
Keepalive service in VANET	[WCNC 2014]
	Dynamic p-graphs Detecting icy roads Adaptive inter-messages delay Robustness of distributed data for Mobile measure of the pollution Cooperative approach near RSU Keepalive service in VANET

Vehicular networks emulation

Distributed data fusion

Data collect on the road

Distributed dynamic group service

Performances in a convoy of vehicles

V2L architecture Simulation of vehicular networks

Road experiments

Messages forwarding

[Mobiwac 2010] [VTC 2010]

[SSS 2012] [IV 2012]

[VTC 2011]

[ICCCN 2010] [SPAA 2010]

[IEEE TVT 2007]

[VTC 2009]

4 ∄ →

Pilot

2 Pilot in Compiègne Aim

Architecture

Airplug framework

Hardware

4 Cooperative communication architecture

Conclusion

< A >

4 ∄ → < ≣ → \equiv

Comosef

Comosef French pilo

Pilo

Aim

Architec

Framewo

_ .

Fusi

Data fusion Example

Properties Properties

Coomm

V2V

. . .

heudiasyc

2 Pilot in Compiègne Aim

Architecture Airplug framework

Aim

Vehicular network

Comosef

Ducourthial

Aim

Pilot in Compiègne

- Vehicular network
- Detecting potential danger

Comosef

Ducourthial

Aim

Pilot in Compiègne

- Detecting potential danger
- Warning only concerned vehicles

10 19

Architecture

heudiasyc

2 Pilot in Compiègne

Architecture

Airplug framework

< A > **∢** ∄ ▶ < ≣ → 1

Pilot in Compiègne Architecture: vehicle as a source

.

Comosef French pilo

Pilot

Architecture

Hardware

Fusio

Data fusio Example Distributed

Properties

Strategy

V2V

. . .

Architecture

Pilot in Compiègne

Architecture: vehicle as a source

Vehicle as a source of information

Airplug framework

Comosef

Ducourthial

Architecture

heudiasvc

Pilot in Compiègne Architecture: vehicle as a source

- Airplug framework
- GPS device and app

Pilot in Compiègne

Architecture: vehicle as a source

Comosef

Ducourthial

Architecture

- Vehicle as a source of information
 - Airplug framework
 - GPS device and app
 - MAP app

Comosef

Comosef French pilo Team

Pilot Aim

Architecture Framework

Hardware

Fusion

Example

Properties

Strategy

V2V

Conclusio

heudiasvc

- Airplug framework
- GPS device and app
- MAP app
- CAN app

Viveris & Heudiasyc

Pilot in Compiègne

Architecture: vehicle as a source

Architecture

Pilot in Compiègne

Architecture: vehicle as a source

Vehicle as a source of information

- Airplug framework
- GPS device and app
- MAP app
- CAN app
- CTM app: local confidence in the danger

Viveris & Heudiasyc

Pilot in Compiègne

Architecture: cooperative detection of danger

Comosef

Ducourthial

Architecture

Pilot in Compiègne

Architecture: cooperative detection of danger

Architecture

Cooperative detection of a danger

MET app: robust distributed data fusion

Introductio

Comoser French pilo

Pilo

Aim Architecture

Framewor

Hardwa

Fusia

Data fusio

Example
Distributed
Properties

Coomr

Strategy V2V

Pilot in Compiègne

Architecture: cooperative detection of danger

• Cooperative detection of a danger

MET app: robust distributed data fusion

Architecture

Pilot in Compiègne

Architecture: cooperative detection of danger

Cooperative detection of a danger

MET app: robust distributed data fusion

Architecture

Pilot in Compiègne

Architecture: cooperative detection of danger

- Cooperative detection of a danger
 - MET app: robust distributed data fusion
 - Updating the local confidence Reading the windscreen wipers speed on the CAN bus

▶ Back

Architecture

Pilot in Compiègne

Architecture: cooperative detection of danger

Cooperative detection of a danger

- MET app: robust distributed data fusion
- Updating the local confidence Reading the windscreen wipers speed on the CAN bus
- Detecting a danger Computed distributed confidence larger than a threshold

Pilot in Compiègne Ducourthial Architecture: cooperative propagation of an alert

• Cooperative propagation of the danger

Pilot in Compiègne Architecture: cooperative propagation of an alert

Architecture

heudiasvc

Comosef

Team

Pilot

Architecture Framework

Hardware

Fusi

Data fusion Example Distributed a Properties

Coommu

Strategy

Pilot in Compiègne

Architecture: cooperative propagation of an alert

Cooperative propagation of the danger

- ALT app: generating an propagating an alert
- HOP app: smart conditionnal retransmission

Architecture

Pilot in Compiègne

Architecture: cooperative propagation of an alert

Cooperative propagation of the danger

ALT app: generating an propagating an alert

• HOP app: smart conditionnal retransmission

• GTW app: searching for Internet gateway

Pilot in Compiègne Architecture: cooperative propagation of an alert

Comosef French pilot

Pilot

Aim

Architecture

Hardware

Fusia

Data fusion Example Distributed a Properties

Coomm

Strategy

V2I

Conclusion

- Cooperative propagation of the danger
 - ALT app: generating an propagating an alert
 - HOP app: smart conditionnal retransmission
 - GTW app: searching for Internet gateway

Pilot in Compiègne

Architecture: cooperative propagation of an alert

The Figure 1 of the Control of the C

Cooperative propagation of the danger

- ALT app: generating an propagating an alert
- HOP app: smart conditionnal retransmission
- GTW app: searching for Internet gateway

. .

Comosef French pilot

Pilot

Aim

Architecture

Hardware

Eucie

Data fusion Example Distributed a Properties

Coomm

Strategy V2V

C I

Pilot in Compiègne

Architecture: cooperative propagation of an alert

Architecture

Cooperative propagation of the danger

ALT app: generating an propagating an alert

HOP app: smart conditionnal retransmission

GTW app: searching for Internet gateway

Web app: warning web clients

Architecture

Pilot in Compiègne

Architecture: cooperative propagation of an alert

heudiasvc

Cooperative propagation of the danger

ALT app: generating an propagating an alert

HOP app: smart conditionnal retransmission

GTW app: searching for Internet gateway

Web app: warning web clients

Web clients warned

Pilot in Compiègne

Architecture: cooperative propagation of an alert

Architecture

heudiasvc

Cooperative propagation of the danger

ALT app: generating an propagating an alert

HOP app: smart conditionnal retransmission

GTW app: searching for Internet gateway

Web app: warning web clients

Web clients warned

Pilot in Compiègne

Architecture: cooperative propagation of an alert

Cooperative propagation of the danger

ALT app: generating an propagating an alert

- HOP app: smart conditionnal retransmission
- GTW app: searching for Internet gateway
- Web app: warning web clients
- Web clients warned

Ducqurt

Architecture: cooperative propagation of an alert

Pilot in Compiègne

Comosef French pilo

Pilot

Architecture

Framewo

Fusio

Data fusion Example Distributed a Properties

Coommun

Strategy

V 21

onclusio

- Cooperative propagation of the danger
 - ALT app: generating an propagating an alert
 - HOP app: smart conditionnal retransmissionGTW app: searching for Internet gateway
 - Web app: warning web clients
 - Web clients warned
 - Far vehicles warned using road side units

Back

13 43

Sommaire

Framework

2 Pilot in Compiègne

Airplug framework

< A > **∢** ∄ ▶

Pilot in Compiègne

Airplug framework 1

Comosef French pil

Pilot

Aim

Framework

Fusic

Data f

Example Distributed Properties

Coommun

C+--+---

V2V

Conclusio

- Core program
 - User-space process
 - Networking
- Applications
 - User-space process
 - Any language
 - · Read on stdin
 - Write on stdout
 - API close to IEEE WSMP
- Robustness
 - Tasks and OS independence
- Portability
 - GNU/Linux

Pilot in Compiègne

Airplug framework 2

Comosef French pil

Pilot

Archite

Framework

Hardware

Fusio

Data fusion Example Distributed a Properties

Coommun

V2V V2I

Conclusio

- Designing new protocols
 - Developed in user space processes
 - Cross-layer solutions facilitated

- Airplug software distribution
 - LEGO: many applications that can be combined
 - Tools to ease packaging, prototyping and studies

https://www.hds.utc.fr/airplug

Ducourthial

. . .

Comosef French pil

Dil.

Ain

Archite

Framework

Fusi

Data fusion Example Distributed al Properties

Coommun

Strategy

V2I

Conclusio

heudiasvo

Pilot in Compiègne Airplug framework 3

- Airplug-term → rapid prototyping
- Airplug-emu → study by emulation
- Airplug-live → real experiments (vehicles, UAV)

+ remote, notk...

French pilo Team

Aim

Architecture
Framework
Hardware

2 Pilot in Compiègne

Δim

Aim

A walaita atuwa

Airplug framework

Hardware

Coommun

V2\

. . . .

Comosef

Ducourthial

Hardware

Research plateform

Road tests

Properties

Data fusion introduction

Fusion

heudiasvc

Example of Basic Belief Assignment Distributed data fusion algorithm

4 ∄ → 4 ∄ → \equiv

Introductio Comosef

French pilot

Pile

Aim Architec

Framewo

E

FUSIO

Data fusion Example Distributed al Properties

Coommuni

.

V2V

`amaliiaia

heudiasvc

3 Distributed data fusion

Data fusion introduction

Example of Basic Belief Assignment Distributed data fusion algorithm

< A >

Data fusion introduction

Comosef French pi

Pilot

Aim Archite

Framewor

Fusio

Data fusion

Example Distributed

Properties

Coommun

Strategy

V2I

Conclusio

heudiasvo

- Several sources of information
 - How to deal with?
 - Could disagree
 - Take benefit of all of them
- Imperfect measures
 - Can we trust data?
 - Imprecision
 - Uncertainty
 - Ambiguity

Ducourthi

Distributed data fusion

Data fusion introduction

Comosef French pi

• How to deal with imprecise and uncertain data?

Pilot Aim Architecture

Set Membership Approach

Imprecision :

uncertainty?

• Aleatory uncertainty :

Probability theory imprecision?

 Theory of Belief Function: generalizes both Also known as Dempster-Shafer Theory of Evidence

Coommuni

Data fusion

• Belief Function Framework

Coommuni

Information modeling

Conclusio

Combination rules

ation rules

[Dempster 1968, Shafer 1976, Smets 1990s]

Data fusion introduction

Data fusion

- Data X with value in Ω
- Representation of X
 - (value, confidence)
 - value: subset of \(\infty \)
 - confidence: indication on the reliability of the item of information
- Interest:
 - Imprecision of X → value
 - Uncertainty of X → confidence

[Dubois, Prade 1988]

Sh.			Confidence	
M.S.L			certain	uncertain
Carc	le	precise	20	probably 20
chrs	=	imprecise	between 15 and 25	probably between
8. O	>			15 and 25

Data fusion introduction

Data fusion

- Frame of discernment: set \(\infty \)
- Basic belief assignment
 - Mass function
 - $m^{\Omega}: \mathcal{P}(\Omega) \rightarrow [0,1]$

•
$$\sum_{X \subset \Omega} m^{\Omega}(X) = 1$$

- Our algorithm: vector of weights
- Dempster operator
 - Emphases the agreement of reliable and independent sources [Smets 1990, Shafer 1976] $m_{1 \bigcirc 2}(A) = \sum_{B \cap C = A} m_1(B) \cdot m_2(C)$
 - Spread the conflict over other sets [Dempster]
- Cautious operator

[Denoeux 2008]

- Do not assume independent sources
- Least commitment principle
- Avoid the data incest

Introduction

Comosef

French pil Team

Pilot

Architec

Framewo

Fusi

Data fusi

Example

Distributed al Properties

Coommuni

C+--+---

V2\

Conclusion

3 Distributed data fusion

Data fusion introduction

Example of Basic Belief Assignment

Distributed data fusion algorithm

Properties

< A >

Ducourthial

Comosef French pil

Pilot

Architectu Framework

Fusio

Data fusio

Example
Distributed a

Properties

Coommun

Strategy

V2V

Conclusio

Distributed data fusion

Example of Basic Belief Assignment 1/3

• Pressure measurement

- Weather forecast
 - Compare current measure with the last one

Example of Basic Belief Assignment 2/3

Lancia de la constitución

Comosef French pilo

Pilo

Aim Architec Framew

Hardwar

Fusio

Data fusio

Example

Distributed a Properties

Coommuni

_

1/21

Barometer?

Measure:

- Pressure measurement: interval / $\subset \mathbb{R}^+$
- Pressure gradient: interval △/ ⊂ ℝ
- Simple mass function:
 - Only two subsets: ΔI and \mathbb{R}
 - R: lack of knowledge
 - $m^{\mathbb{R}}(\Delta I) = 1 \alpha$
 - $m^{\mathbb{R}}(\mathbb{R}) = \alpha$
 - α: uncertainty of the barometer

Example of Basic Belief Assignment 3/3

Example

Coarsening

Finite frame of discernment instead of △/ ⊂ ℝ

Example: $\Omega = \{wet, cloud, sun\}$

Mass function:

{wet}

 $\Delta I < 0$

{wet, cloud}

{wet, cloud, sun}

{cloud, sun}

 $\Delta I >> 0$

Combination

Decision

 From mass to pignistic probability $P(A) = \sum_{\emptyset \neq B \subset \Omega} m(B) \frac{|A \cap B|}{|B|}$

Introductio

Comosef French pilot

Pile

Aim Architect

Framewo

_ .

Fusion Data fi

Example
Distributed alg.

Coommun

Strategy

V2V

Conclusio

heudiasvc

3 Distributed data fusion

Example of Rasic Relief Assignmen

Distributed data fusion algorithm

Proportios

< □ b

4 ≣ ▶

4 Ē ► Ē

=) Q (~

Ducourth

French pil

Pilo

Aim Archite

Framewor

_ .

Fusic

Data fusion

Distributed alg.

Coommun

_

V 2 V

Conclusio

Distributed data fusion

Distributed algorithm: motivation

• Distributed approach for data fusion

- Direct confidence (regularly) produced locally Using an external uncertain device
- Node's confidence computed using other values
- Avoiding data collection
- Locality
 - One result per node
 - Depends on its position in the network

Distributed algorithm: example

Distributed alg.

 Result on any node v now depends on all other nodes, not only its neighbors.

Distributed algorithm: characteristics

Comosef French pilo

Pilo

Aim Archite

Framewor

Fusio

Data fusion
Example
Distributed alg.

Coommun

Strategy

V2I

Conclusio

- Our distributed data fusion algorithm [SSS2012]
 - Combine all direct confidences of the system
 - Relies on local periodic broadcast
 - Discount received information
 - → confidence decreases according to the distance
- Characteristics
 - Finite data set
 Discretization + adapted operators
 - Asynchronous and anonymous system
 - Unreliable message passing system
 - Intermittent faults on memories/messages
 - Crash faults on nodes

Distributed algorithm: details

private

Distributed alg.

Upon (local) timer expiration

 $PRIV_{\nu} \leftarrow current direct confidence$ $OUT_{\nu} \leftarrow PRIV_{\nu}$ **for each** entry u in IN_v **do** $OUT_v \leftarrow OUT_v \oslash r(IN_v[u])$ end for push(OUT_v) Reset IN

Restart the timer

Introductio

Comosef French pilot

Pilo

Aim

Architec Framewo

Hardwar

Fusi

Example Distributed

Properties Properties

Coommuni

V2V

onclusion

heudiasvc

3 Distributed data fusion

Data fusion introduction Example of Basic Belief Assignment Distributed data fusion algorithm

Properties

4 🗇 ▶

Properties: locality

Comosef French pilo

Pilot

Aim

Architec

Framewor

Fusio

Example
Distributed a

Coommun

Coommuni

V2V

Conclusio

Discounting r

• Local computation: $OUT_v \leftarrow OUT_v \oslash r(IN_v[u])$

O: cautious operator defined on weights

• r : discounting function

Decreases the information

Application-dependent

Without discounting

A single result per connected component

• With discounting

· Limited influence of a node

Locality of the result

neudiasyc

Properties: robustness

Comosef French pilot

Pilo

Aim

Archite

Hardware

Fusio

Data fusion Example Distributed alg

.

Coommuni

V2V

V 21

Conclusio

Self-stabilization

[SSS2005, SSS2007]

- : r-operator defined by x y = x r(y)
- Condition 1: endomorphism
 r(w₁ ⊗ w₂) = r(w₁) ⊗ r(w₂)
- Condition 2: expansion
 w ≺_∅ r(w)
- Without discounting
 - No convergence after a fault In a message, in a memory or in the input device
- With discounting
 - Convergence in finite time after the transient failure ceases

4 ∄ →

Properties: complexity

Introduct

Comosef French pilot

Pilot Aim

Hardwa

Eucio

Data fusion Example Distributed

Properties

Coomm

Strategy V2V

. . .

heudiasvc

Stabilization time

supposing a synchronous system

- O(k+D)
- k: defined by r^k (smallest value) = largest value
- D: diameter of the stabilized topology

Summary

Comosef

French p

1 Introduction

2 Pilot in Compiègne

Distributed data fusion

4 Cooperative communication architecture Strategy for dynamic networks One-to-many communication (V2V)

Vehicle to Infrastructure communication (V2I)

Fusi

Data fusion Example Distributed a Properties

Coommunic.

Stratemy

V2\

Conclusio

Introductio

Comosef French pilot

Pilot Aim

Framewo

F

Fusion

Example
Distributed
Properties

Coomm

Strategy

V2\

Conclusion

4 Cooperative communication architecture Strategy for dynamic networks

One-to-many communication (V2V)

Vehicle to Infrastructure communication (V2I)

Cooperative communication architecture

Strategy for dynamic networks 1/2

Comosef French pil

Pilot

Architect

Fusio

Data

Example
Distributed a

Coommu

Strategy

1/21

Conclusio

- Dynamic network: topology? address?
- One-to-one communication (V2-1V)
 - Known receiver? → fix or already encountered
 - Maintaining a path
- One-to-many communication (V2-nV)
 - Sending a message without knowing the receiver ...and without trying to know it
 - Sending to receiver(s) defined by conditions
- Vehicle-to-infrastructure communication (V2I)
 - Sharing the gateways toward Internet
 - Enlarging their range
 - Cooperative approach
 - First try by yourself (waiting for a gateway)
 - Else request help from others

Cooperative communication architecture

Strategy for dynamic networks 2/2

. . .

Comosef French pile

Pilo

Architect

Fusio

Data fusion Example Distributed all Properties

Coommuni

Strategy

V2I

Conclusio

- Choosing the next hop
 - Neighborhood is unstable
 - Learning from the neighborhood is costly
- Sender-side
 - Exchange messages to learn about the neighbors
 - Select a neighbor
 - Send the message to the selected neighbor
 - Consume bandwidth
 - The neighborhood may have change
- Receiver-side
 - Send the message to all neighbors
 - Each neighbor decides whether it is concerned or not

Solutions to avoid several retransmission if required

V2V

heudiasvc

4 Cooperative communication architecture

Strategy for dynamic networks

One-to-many communication (V2V)

4 ∄ →

One-to-many communication (V2V)

V2V ∨2I

Conclusio

heudiasvo

- Conditions instead of addresses
 More adapted to dynamic networks
 - CUP: upward condition → applications
 - CFW: forward condition → local broadcast.
- Conditions
 - Identity, address, GPS cf. geocast
 - Distance, duration, trajectory correlation... Eg. being back to the sender

200

One-to-many communication (V2V)

V2V V2I

Conclusio

heudiasvo

- Conditions instead of addresses
 More adapted to dynamic networks
 - CUP: upward condition → applications
 - CFW: forward condition → local broadcast
- Conditions
 - Identity, address, GPS cf. geocast
 - Distance, duration, trajectory correlation... Eg. being back to the sender

One-to-many communication (V2V)

- CUP: upward condition → applications
- CFW: forward condition → local broadcast
- Conditions
 - Identity, address, GPS cf. geocast
 - Distance, duration, trajectory correlation... Eg. being back to the sender

Ducourtillar

Comosef French pil

Pilo

Pilot Aim

Architec

Framewo

Fueir

Data fusion Example Distributed Properties

Coommu

Strategy V2V

V2I

Conclusio

Cooperative communication architecture

One-to-many communication (V2V)

- Conditions instead of addresses
 More adapted to dynamic networks
 - CUP: upward condition → applications
 - CFW: forward condition → local broadcast
- Conditions
 - Identity, address, GPS cf. geocast
 - Distance, duration, trajectory correlation... Eg. being back to the sender

Ducourt

Comosef

Pilo

Aim

Framew

E

Data fusion Example Distributed a

Coommun

Strategy V2V

V2I

Conclusio

Cooperative communication architecture

One-to-many communication (V2V)

- Conditions instead of addresses
 More adapted to dynamic networks
 - CUP: upward condition → applications
 - CFW: forward condition → local broadcast.
- Conditions
 - Identity, address, GPS cf. geocast
 - Distance, duration, trajectory correlation... Eg. being back to the sender

One-to-many communication (V2V)

Coommuni

V2V

Conclusio

- Conditions instead of addresses
 More adapted to dynamic networks
 - CUP: upward condition → applications
 - CFW: forward condition → local broadcast
- Conditions
 - Identity, address, GPS cf. geocast
 - Distance, duration, trajectory correlation... Eg. being back to the sender

) d (

One-to-many communication (V2V)

- CUP: upward condition → applications
- CFW: forward condition → local broadcast
- Conditions
 - Identity, address, GPS cf. geocast
 - Distance, duration, trajectory correlation... Eg. being back to the sender

One-to-many communication (V2V)

CUP is true

- CUP: upward condition → applications
- CFW: forward condition → local broadcast
- Conditions
 - Identity, address, GPS cf. geocast
 - Distance, duration, trajectory correlation... Eg. being back to the sender

One-to-many communication (V2V)

- Conditions instead of addresses
 More adapted to dynamic networks
 - CUP: upward condition → applications
 - CFW: forward condition → local broadcast
- Conditions
 - Identity, address, GPS cf. geocast
 - Distance, duration, trajectory correlation... Eg. being back to the sender

V2I

Strategy for dynamic networks

Vehicle to Infrastructure communication (V2I)

heudiasvc

4 ∄ →

Vehicle to Infrastructure (V2I)

V2I

heudiasvo

- Cooperative strategy
 - Relies on conditional transmissions New condition: gateway discovered
 - Messages contains:
 - Lifetime
 - Number of attempt for robustness
 - Delay before forwarding to other nodes

Vehicle to Infrastructure (V2I)

Comosef French pil

Pilot

Aim

Archited

Hardware

Fusio

Data fusion Example Distributed al

Coommuni

Stratami

V2V

- Cooperative strategy
 - Relies on conditional transmissions New condition: gateway discovered
 - Messages contains:
 - Lifetime
 - Number of attempt for robustness
 - Delay before forwarding to other nodes

Vehicle to Infrastructure (V2I)

Comosef French pil

Pilot

Δim

Archite

Framewo

Email

Data fusion Example

Properties

Coommun

V2V V2I

- Cooperative strategyRelies on conditional transmissions
 - New condition: gateway discovered
 - Messages contains:
 - Lifetime
 - Number of attempt for robustness
 - Delay before forwarding to other nodes

Vehicle to Infrastructure (V2I)

Comosef French pil

Pilot

Δim

Archite

Framewo

Fusio

Data fusion Example

Distributed al Properties

Coommuni

C1 ...

V2\ V2I

Canalusia

- Cooperative strategy
 - Relies on conditional transmissions New condition: gateway discovered
 - Messages contains:
 - Lifetime
 - Number of attempt for robustness
 - Delay before forwarding to other nodes

Vehicle to Infrastructure (V2I)

Comosef French pil

Pilot

Aim

Archite

Hardware

Fusio

Data fusion Example Distributed alg

Coommuni

V2V V2I

- Cooperative strategy
 - Relies on conditional transmissions New condition: gateway discovered
 - Messages contains:
 - Lifetime
 - Number of attempt for robustness
 - Delay before forwarding to other nodes

Ducourti

Comosef French pil

Pilot

Aim

Archite

Framewor

Eusia

Data fusion

Distributed a Properties

Coommun

Strategy

V2I

onclusion

Cooperative communication architecture

Vehicle to Infrastructure (V2I)

- Cooperative strategy
 - Relies on conditional transmissions New condition: gateway discovered
 - Messages contains:
 - Lifetime
 - Number of attempt for robustness
 - Delay before forwarding to other nodes

Vehicle to Infrastructure (V2I)

. . .

Comosef French pil

Pilot

Δim

Archite

Framewo

Eucio

Data fusion

Distributed a Properties

Coommuni

Stratami

V2\ V2I

onclusion

- Cooperative strategy
 - Relies on conditional transmissions New condition: gateway discovered
 - Messages contains:
 - Lifetime
 - Number of attempt for robustness
 - Delay before forwarding to other nodes

≣ →

Vehicle to Infrastructure (V2I)

. . .

Comosef French pil

Pilot

Aim

Architec

Hardware

Fusio

Data fusion Example Distributed a

Coommuni

V2V V2I

- Cooperative strategy
 - Relies on conditional transmissions New condition: gateway discovered
 - Messages contains:
 - Lifetime
 - Number of attempt for robustness
 - Delay before forwarding to other nodes

Vehicle to Infrastructure (V2I)

V2I

heudiasvo

- Cooperative strategy
 - Relies on conditional transmissions New condition: gateway discovered
 - Messages contains:
 - Lifetime
 - Number of attempt for robustness
 - Delay before forwarding to other nodes

Vehicle to Infrastructure (V2I)

V2I

- Relies on conditional transmissions New condition: gateway discovered
- Messages contains:
 - Lifetime
 - Number of attempt for robustness
 - Delay before forwarding to other nodes

Vehicle to Infrastructure (V2I)

. . .

Comosef French pil

Pilot

Aim

Architec

Hardware

Fusio

Data fusion Example

Coommuni

Strategy

V2I

- Cooperative strategy
 - Relies on conditional transmissions New condition: gateway discovered
 - Messages contains:
 - Lifetime
 - Number of attempt for robustness
 - Delay before forwarding to other nodes

Vehicle to Infrastructure (V2I)

......

Comosef French pil

Pilot

Aim

Archite

Framewor

Emaile

Data fusion Example

Properties

Coommuni

V2V V2I

- Cooperative strategy
 - Relies on conditional transmissions New condition: gateway discovered
 - Messages contains:
 - Lifetime
 - Number of attempt for robustness
 - Delay before forwarding to other nodes

Vehicle to Infrastructure (V2I)

Comosef French pil

Pilot

Aim

Architec

Hardware

Fusio

Data fusion Example Distributed al

Coommuni

Strategy V2V

V2I

. .

- Cooperative strategy
 - Relies on conditional transmissions New condition: gateway discovered
 - Messages contains:
 - Lifetime
 - Number of attempt for robustness
 - Delay before forwarding to other nodes

Vehicle to Infrastructure (V2I)

. . .

Comosef French pil

Pilot

. . .

Archite

Framewor

Eucio

Data fusion

Example
Distributed al
Properties

Coommuni

Stratami

V2V

- Cooperative strategy
 - Relies on conditional transmissions New condition: gateway discovered
 - Messages contains:
 - Lifetime
 - Number of attempt for robustness
 - Delay before forwarding to other nodes

Oistributed data fusion

Conclusion

Comosef

Ducourthial

< A > **4 ∃ →** < ∃ > 1

35 97

Summary

Comosef French pilo

Pilo

Aim Architect

Framewor Hardware

Fusio

Data fusion Example Distributed all Properties

Coommuni

Strategy

V2I

Conclusion

Cooperative alert generation and propagation in vehicular networks

- Distributed data fusion
 - Avoiding the data collection phase
 - One result per node depending on its position
 - Robust algorithm
- Cooperative communication architecture
 - Adapted to dynamic networks
 - V2V and V2I
- CoMoSeF project
 - From theory to practice
 - Special thanks to:
 - Pekka Eloranta
 - the Celtic-Plus Office and the DGE
 - and all the Heudiasyc team!

Comosef French pile

Pilo

Aim Architect Framewo

Fusio

Data fusion Example Distributed a

Coommun

Strategy V2V

- Distributed data fusion
 - Enforce confidences in the rain event
- Decision phase
 - Pignistic probability > threshold → alert
- Alert propagation
 - Message forwarding based on conditions

