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ABSTRACT
Nowadays, the Intelligent Transport Systems (ITS) attract
many attentions. ITS applications would indeed increase
the road safety and the transport efficiency, limit the im-
pact of the vehicles on the environment, improve the overall
productivity... However, several important open issues have
to be solved before. Among them, the software architecture
represents a key issue. Indeed, most of the ITS applications
will rely on a distributed frameworks embedded in the vehi-
cles. These applications often require robustness, quality of
services or real time management, while the vehicular net-
works present important constraints in terms of dynamic,
variable density, communication reliability, communication
duration...

In this paper, we discuss the requirements of the software
architectures for ITS applications. Next we propose an effi-
cient architecture for distributed applications over vehicular
networks, called Airplug. This architecture has been imple-
mented in a light embedded framework, and has been used
to test distributed services and protocols on the road. We
then show that such a light and efficient architecture is well
adapted to build distributed applications on vehicular net-
works.
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1. INTRODUCTION
1.1 Intelligent Transportation System
The Intelligent Transportation Systems are intended to im-
prove the transportation in terms of safety, mobility, impact
on the environment, productivity... The underlying tech-
nologies encompass a broad range of communications and

electronics technologies. They are integrated in the trans-
portation system’s infrastructure as well as in vehicles them-
selves.

Among the applications, we may quote i) the infrastruc-
ture oriented applications for optimizing their management
(transit management, freeway management, intermodal frei-
ght, emergency organization...) , ii) the vehicle oriented
applications for increasing the road safety (incident man-
agement, crash prevention, collision avoidance, driver assis-
tance...), iii) the driver oriented services for improving the
road usage (traffic jam and road work information, trav-
eler payment, ride duration estimate...) and iv) the passen-
gers oriented applications for offering new services on board
(Internet access, distributed games, chats, tourist informa-
tion, city leisure information, movies announces downloads
[21]...).

The ITS motivations are multiple. With a better resource
management (infrastructure, car fleets, intermodal freight...),
the transport productivity will increase. Regarding the road
safety, the Department of Transport (DoT) of the USA lau-
nched large initiative to reduce the number of deaths in the
road (around 43,000 per year) [8]. The European Commis-
sion (EC) targets to halve the number of road fatalities by
2010 [5] and it launched large ITS projects. Some of the
ITS applications are studied by car manufacturers to pro-
pose more and more equipped vehicles. A new business re-
lated to on board services may appear in few years. Finally,
a better road management either by the infrastructure or
by the drivers will contribute to environmental preservation
by avoiding traffic congestion, optimizing the car speed, eas-
ing public transportation (intermodality) or organizing car
sharing services for instance. Since consumers are more and
more concerned by safety and environmental issues, all these
services became marketing arguments for car manufacturers.

1.2 Projects
Nowadays, ITS attract many attention of governmental agen-
cies, industries and research teams all over the world. Large
R&D initiatives have been launched in the USA (VII, CI-
CAS, IVBSS...), in Europe (CVIS, SAFESPOT, COOP-
ERS, PReVENT, GST, HIGHWAY, FLEETNET...), in Ja-
pan (SmartWay, VICS), in India (ITSIndia), in Germany
(NoW), in France (PREDIT)... We highlight some of the
main projects that require vehicle-to-vehicle (V2V) or vehicle-



to-infrastructure (V2I) communications.

In the USA, the DoT launched an important ITS program
[8]. A functional architecture has been defined for the future
national ITS applications [9]. The Cooperative Intersection
Collision Avoidance Systems (CICAS) initiative aims at im-
proving the road safety by enhancing driver decision-making
at intersections [1]. It relies on V2I communications based
on DSRC. The Vehicle Infrastructure Integration (VII) ini-
tiative focuses on the deployment of advanced V2V and V2I
communications to increase road safety and relieve traffic
congestion [13].

In Europe, major R&D projects are supported by the EC to
constitute the basis of an European-wide intelligent trans-
portation system. The COMeSafety project supports the
eSafety Forum which is dedicated to the improvement of
road safety using ITS. The Cooperative Vehicle Infrastruc-
ture Systems project (CVIS) focuses on the technologies that
will enable V2V and V2I communications between the ve-
hicles and the infrastructure [4]. The goal is to develop a
cooperative road transport system, in order to increase the
road safety and efficiency, and to reduce the environmental
impact of the road transport on the environment [3]. The
SAFESPOT project aims at developing a Safety Margin As-
sistant that will detect dangerous situations in advance, in
order to extend the driver awareness of the surrounding envi-
ronment [12]. Such assistant is based on V2V and V2I com-
munications. The COOPERS project (Cooperative Systems
for Intelligent Road Safety) focuses on the development of
innovative telematics applications on the road infrastructure
to enable cooperative traffic management on motorway sec-
tion [2]. The goal is to enhance the road safety by providing
direct and up to date traffic information to the motorized
vehicles. The PReVENT project addresses the integration
of new in-vehicles systems which sense the environment [11].
The goal is to help the driver to avoid or mitigate an acci-
dent. For this purpose, the WILLWARN subproject works
on a decentralized warning distribution relying on V2V com-
munication. The GST project (Global System for Telemat-
ics) focuses on the creation of an open and standardized
end-to-end architecture for automotive telematics services
[7]. With this open platform, vehicle manufacturers, public
services and certified companies will allow to provide and
distribute their own infrastructure-oriented services to con-
sumers (eg. emergency call services, enhanced floating car
data services, safety warning and information services...).

1.3 Embedded architectures
Almost all ITS applications will rely on software embedded
in the vehicles, and many of them will require V2V or V2I
communications, as the above described projects. To ensure
the good working order of the applications and to launch
the new ITS business, a standard embedded architecture is
certainly welcome.

Standardization of the vehicular communication is now on-
going in major international organizations (IEEE, IETF,
ETSI, ISO, SAE, ASTM), industrial consortia such as the
Open Mobile Alliance (OMA) [10] and the Car-to-Car Com-
munication Consortium (C2C-CC) [16] and national ITS au-
thorities. The IEEE develops the Wireless Access in Vehic-
ular Environments (WAVE) and extensions of the 802.11

protocols for ITS applications (IEEE 802.11p). The Contin-
uous Air-Interface for Long and Medium range telecommu-
nication standard (CALM) is developed by the ISO Tech-
nical Committee 204, Work Group 16 (ISO TC204 WG16).
This standard assumes that future vehicles will be equipped
with more than one wireless technology. CALM includes
IPv6, and a set of protocols to route data over the available
wireless technologies to ensure quality of service. The IETF
develops extensions of IP for mobiles nodes (Mobile IP) and
mobile networks (NEMO). These protocols are considered in
CALM. The OMA develops protocols for data management
among mobile nodes. The C2C-CC specifies and experi-
ments vehicular communication, and promotes the harmo-
nization of vehicular communication standards worldwide.

Regarding the embedded applications design, works have
been done around Java. The OSGi alliance promotes an
horizontal framework for the deployment of distributed ap-
plications. It is based on Java and relies on the concept
of bundles that extends the concept of class. OSGi imple-
ments a dynamic service-oriented programming and includes
the concept of component. The car manufacturers have been
contributed to the OSGi and an extension has been proposed
to manage the sensors inside a vehicle [14].

Currently, not all the projects have designed their embedded
architectures, nor released related public documents. The
GST architecture is based on Linux, OSGi, IPv6, HTTP,
SOAP and OMA DM protocols [6]. The CVIS project ar-
chitecture relies on Linux, OSGi, IPv6 and CALM [3].

1.4 Contribution
The envisaged architectures often rely on existing standards.
This reduces the development time by reusing software and
simplifies the portability and deployment issues. Hence, ex-
isting standards would help to the launch of the new ITS
business.

However, not all the existing standards may be adapted to
the vehicular networks. Such networks are highly dynamic,
unreliable and asynchronous. They are generally penalized
by a low bandwidth and a short communication duration.
Despite these difficulties, ITS applications require often ro-
bustness, quality of services or real time management. Last
but not least, still many research issues remain open and
the embedded architectures should allow the integration of
future protocols, distributed algorithms and programming
paradigms.

It is our point of view that highly dynamic networks are
not like any other computer networks where already known
solutions can be deployed. Such networks are still largely un-
known and the standard required for deploying distributed
applications should be light and open to any new solution.
With the increasing number of equipped mobile nodes, fu-
ture yet unknown services and usages will certainly appear,
with their related problems. The embedded distributed fra-
mework should only fix the overall architecture and a very
light and open data exchange protocol, in order to remain
open to any protocol stack, programming paradigm, and fu-
ture improvement, while still allowing new services deploy-
ment.



In Section 2, the requirements of the embedded architectures
are discussed on the basis of the ITS open issues. In Sec-
tion 3, a simple architecture – named Airplug – is proposed,
which fulfills the requirements. It focuses on the data ex-
change scheme and remains open to any addressing scheme,
protocol stack and programming language. Sections 4 de-
tails an implementation of the Airplug architecture in a light
framework, and reports experiments. Concluding remarks
end the paper in Section 5

2. ARCHITECTURE REQUIREMENTS
In this section, we analyze the requirements of embedded
distributed frameworks for vehicular networks. We begin by
sketching the open issues.

2.1 ITS open issues
One of the main problem of ITS applications concerns the
dynamic of the network. Inside a given perimeter, the ar-
rival and departure rate of vehicles is variable and can be
very high. The vehicles density is sometimes high, some-
times low. Moreover, many obstacles and interferences can
disturb the signal propagation and the quality of reception
(eg. trucks, buildings...). This leads to difficulties for the ac-
cess medium layer, which has to fairly share the bandwidth
between vehicles. Research studies are currently ongoing for
the link layer to ensure fairness, efficient global throughput
and quality of service.

It is important to note that cellular-like networks cannot
solve all the ITS issues. For instance, if such an infrastru-
cture-based network can be used to broadcast a message in
a given area, it is much more difficult to use it for warning
only the vehicles which will encounter a given road accident.
To the contrary, solutions have been proposed to solve this
problem in the inter-vehicles networks [22, 18], so-called Ve-
hicular Ad hoc NETwork (VANET). A VANET is a special
case of MANET (Mobile Ad hoc NETwork) and routing
protocols studied for ad hoc networks may be used for ITS
applications. However, as the neighborhood of any vehi-
cle and the whole topology are very unstable, the classical
MANET protocols are not always efficient. Proactive algo-
rithms consume bandwidth to build unstable routing tables;
reactive algorithms experience many route breaking; GPS-
based routing needs to address a large area to reach a fast
mobile vehicle [18]. Research studies are currently ongoing
for V2V and V2I routing.

The network dynamic is also a difficulty for data flow trans-
portation. Routes are unstable and wireless communications
error prone. The bandwidth estimation is then very approx-
imate and the optimal sending rate is variable and almost
impossible to determinate. Transport protocols such as TCP
often experience problems in wireless networks because they
interpret layer two collisions as more durable routing prob-
lems (congestion in layer 3). Hence, using the Internet stack
including TCP, IP, HTTP, SOAP... in the vehicles may lead
to some performance issues especially in low bandwidth net-
works. For instance, in many cases Internet addresses can
be replaced by node’s ID, which in turns are not always
mandatory in such opportunistic networks [18]. Hence, be-
sides the routing algorithms, research are still required on
the protocol stack.

Another important issue is the construction of robust dis-
tributed applications over such a network. When interacting
each others, the embedded programs compose a distributed
application, running on an unreliable asynchronous network
where nodes may disappear. However several important is-
sues are still unresolved in such networks. It has been proved
that consensus cannot be solved [19] while taking a common
decision is a key issue for many applications: braking of
several cars with no multiple crash, insertion of a vehicle
(cooperative driving), distributed games... What we could
name best effort algorithms may replace ideal but unreach-
able deterministic algorithms, with consequences on the use
of the results and, finally, on the usages.

Many ITS applications are sensible to attacks: safety ap-
plications require protections to ensure their service; value
added applications need protections face to intruders; traf-
fic forecast and diversion services have to be secured against
false information... However, securing such a network is not
easy [24]. Certificates based confidence systems could be
adapted. But such so-called VPKI (Vehicular Public Key
Infrastructure) require a revocation key system, which can-
not be efficiently implemented in a network with episodic
connections to an authoritative server. Moreover, well cer-
tified messages may contain false information.

Many other challenges ought to be invoked, such as privacy
preserving, accurate car positioning, dynamic maps (adding
dynamic attribute to embedded maps), real time issues, con-
text aware optimization...

2.2 Requirements analysis
Besides the technical issues, the success of the ITS appli-
cations depends on some business issues such as the con-
sumer acceptance or the attraction of the business model. To
launch this new activity, the profitability of the new services
should be ensured. It depends on the number of equipped
cars, on the ease of deployment of new applications, on the
efficiency of these new services... The embedded architec-
ture is then crucial.

Such an architecture should be cheap to be rapidly inte-
grated in a large number of vehicles. It should ease the de-
ployment of new applications in the vehicles. Note however
that ensuring an easy deployment should not impact the
programming language nor paradigm. As continuous im-
provements appear in software programming, the ITS stan-
dard should focus on the applications architecture and not
on their implementation.

The architecture should also remain open to any new tech-
nology, protocol or algorithms. Indeed as we noticed, many
scientific challenges are studied by research teams and new
efficient solutions could appear while the framework is al-
ready installed in many vehicles. Moreover several concur-
rent implementations of the architecture should be possible
in different but interoperable frameworks. Hence, the stan-
dard should be minimal and should focus on the exchange
protocol.

To increase the user acceptance, the services should be reli-
able. This implies robust and light frameworks, as well as a
clear independence between the embedded applications (to



limit the error propagation). Indeed, when a task fails or has
a hieratic behavior, the rest of the system must continue to
work. The more the tasks are independent, the more the ro-
bustness can be ensured. Moreover, the architecture should
be defined on top of a robust operating system (eg. with
user spaces applications) and the resources allocation, tasks
scheduling and real time management should be delegated
to it. This is important to avoid any redundancy with the
classical operating systems and to allow to take benefit of
the continuous improvements in operating systems develop-
ments.

Finally, the architecture should allow efficient framework im-
plementations to offer good performances. Complex proto-
cols stacks that lead to latency, overheads and large headers
should be avoided when possible.

3. THE AIRPLUG ARCHITECTURE
In this section, we sketch a software architecture – named
Airplug – that fulfills the above requirements. It is dedicated
to the design of distributed applications in highly dynamic
ad hoc networks, such as the vehicular networks.

3.1 Airplug architecture design

Process-based architecture. In order to obtain a light,
portable and robust distributed framework, the Airplug ar-
chitecture relies on the facilities given by standard operating
systems: resources allocation, process scheduling, real-time
management... This avoids any redundancy between the
framework and the operating system, and allows to take ben-
efit of any improvement in these fields (including real time
management). It is expected a portable POSIX operating
system with process management and memory protection
for robustness issue.

The architecture has been designed to remain open to any
future solutions. Hence it imposes very few common con-
ventions to the applications, which can be developed with
any programming language. The applications do not need to
include network operations nor complex inter-process com-
munication primitives. By this way, the applications do not
depend on the framework and can be used standalone. This
permits any future improvement either in the programming
paradigms, the network protocols or the framework itself.

The framework is concentrated in a single core program –
called airplug – per mobile node, that runs in a standard
process on top of the operating system. By not including any
part of the framework in the kernel nor in the applications,
the independence with the operating system as well as with
the applications programming is enforced.

The Airplug architecture accepts either local or distributed
applications. A local application does not have any interac-
tion with remote applications. A distributed application is
composed of several instances of the same program, running
in different mobile nodes, and exchanging messages. Local
applications as well as local instances of the distributed ap-
plications run in separate processes with their own memory
space. This enforces the applications independence as well
as the reliability: an application may be bogus with very
few impact on the rest of the system. Moreover, this allows

to subcontract the scheduling of the applications as well as
the real-time management: the framework should just set
the priorities regarding parametric rules (eg. context-aware
heuristics) and the operating system does the rest.

All these processes are launched by airplug, which creates
descendant processes, called plugged processes. By this way,
airplug is easily informed of the problems of an application
by catching the related signals sent by the OS to the parent
process (eg. abnormal termination).

802.15

TCP UDP

IP

AIRPLUG

TCP/IP
over

802.11 UDP/IP
over

802.11

VANET

protocol

over

802.11

RAW

VANET

protocol

over

802.15

APP
ALT

PRO
plugged

process

local

link

socket

airplug

process

operating

system

network

interfaces

plugged

interfaces

standard

protocol

stacks

802.11802.11

Figure 1: A node in the airplug architecture.

Inter-process communications. To fit with the asynchro-
nous opportunistic network, the protocol is based on asyn-
chronous messages passing. In order to minimize the re-
quirements for the applications development, inter-process
communications are done with messages through standard
IO. Indeed, any process owns by default a standard input
stdin, a standard output stdout (and a standard error out-
put stderr). This functionality is then supported by any
programming language, and it gives no requirement on the
application programming. The standard IO are sufficient to
perform the inter-process local communications, and it can
easily be extended to ensure inter-process remote commu-
nications (between distant nodes). Moreover, such a com-
munication scheme allows easy standalone use of the appli-
cations (without airplug) and it permits to reuse existing
applications.

For each plugged process, standard input and output are
redirected from and to airplug via bi-directional connected
communication links called in the following local links (see
Figure 1). There is one local link per plugged process. By
this way, each time a plugged process writes on its stan-
dard output, airplug will receive the data via the related
local link. And each time airplug writes on a local link, the
related plugged process will receive the data. The airplug
program scrutinizes the local links to receive the data from
the plugged process and forward them to the destinations
(local or distant process specified by the sender).



Hence airplug represents a kind of “bus” between all the
plugged processes. The network interfaces are also con-
nected to this bus so that any application on the top of
an airplug instance in the vicinity are connected to a com-
mon applicative bus. This bus can be extended by means of
multi-hops communications. It is important to note that this
bus is very simple and can then be efficiently implemented
by avoiding any kind of unwanted processes synchroniza-
tion. This simplicity is well adapted to the opportunistic
networks: it provides quick communication with very few
common conventions and without any global management
(eg. services directory); it then supports rapid extension or
reduction depending on the nodes movements.

Language independence. Besides the efficiency, this com-
munication scheme preserves the language independence.
Even shell scripts programs can be used. To the contrary,
more sophisticated inter-process schemes (shared memory,
MPI, CORBA, Java RMI, Web services, OSGi...) are re-
strictive and limit the language choice or requires specific
libraries. Here, all the communication stuff is implemented
in airplug and applications just have to read and write to
their standard IO.

The only constraint is for programs which have at least a
second entry such as the keyboard (for interactive applica-
tions), a camera... These applications should then be able to
read several entries. This can be done for instance by asyn-
chronous reception. Whenever the operating system signals
that an entry can be read, the process checks its entries.

Thanks to the language independence, the more adapted
programming paradigm can be chosen to build an airplug
compatible application: object oriented or not, multi-thread-
ed or not, interpreted or compiled... Other criteria can be
considered such as the experience of the programmers, the
code reusing, the compatibility with other environments (see
Section 4)... Reading and writing on standard IO is very
general, and many existing applications can be used. A
small adaptor can format the output of such existing ap-
plications to conform to the airplug conventions. This can
be implemented as a standalone program inserted between
airplug and the legacy application (for instance through a
pipe | with a shell script).

Finally, the language independence allows to take benefit
of any language and compiler improvement, and to remain
open to new future programming paradigm. Assuming a
similar embedded computers architecture in each vehicle,
the applications could be deployed using the operating sys-
tems packages management tools.

Networking integration. As explained earlier, a layered
structure with the framework on top of an operating sys-
tem is advantageous to avoid any redundancy. However the
optimal structure is currently not really clear regarding net-
working because many research works investigate so-called
cross-layering solutions. Hence, it appears necessary to have
a versatile architecture instead of a strict layered structure
between the network and the applications, in order to au-
thorize any by-pass.

In the Airplug architecture, the network interfaces are ac-
cessed through airplug, and are called plugged interfaces
(Figure 1). The plugged interfaces are managed as the
plugged processes, to the exception that they are connected
to airplug via some sockets. Hence, the network is addressed
by the applications in the same way they address a message
to another application, simply by writing to their standard
output. The airplug program receives the data sent by the
plugged processes and sends them to the desired plugged
interface through the related socket.

By using several plugged interfaces, several network devices
can simultaneously be accessed, an several protocols can be
used. For instance, sockets may be open for the Bluetooth
interface and other to some WiFi interfaces. Some of them
could use the TCP/IP stack while some other could per-
form broadcast over UDP. By allowing to use the network
stacks included in the kernels, airplug ensures the compat-
ibility with any existing network such a Internet, and can
take benefit of any improvement of such protocols. For in-
stance, IPv6 may be used by including it in the kernel, and
by opening the corresponding socket.

But this architecture is also open to any new communica-
tion scheme. By using raw sockets, the link layer can directly
be accessed through a plugged interface. This can advanta-
geous be used to broadcast in the neighborhood by avoiding
the IP and UDP headers. Moreover, this allows to imple-
ment in user space new protocols inside plugged processes.
Such a process will receive the messages from the applica-
tions that want to send their data using the new protocol. It
will then send messages through a raw socket to the remote
hosts (Figure 2). Hence, any by-pass of the Internet stack
as well as cross-layering solution can be designed by simply
using the inter-applications facilities of airplug.
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Figure 2: Integration of a new protocol in the air-
plug architecture. Here the HOP protocol is used
by the ALT application.

3.2 Airplug protocol



Protocol philosophy. By Airplug protocol, we mean the
common conventions necessary to the inter-applications com-
munications. As previously explained, a local application
runs in a process launched by airplug. Any service (such
as a network service) is implemented in such a process. A
distributed application is composed by several instances of
the same local application, running on different hosts. On a
given host, an application may be composed of several pro-
cesses if some parts of this composite application may be
addressed by other applications directly.

Hence, a process represents the addressable unit in the Air-
plug architecture and any communication is performed be-
tween two processes. This implies to be able to address a
process.

Addressing. Locally, a process is designed by the name of
the application. This name is used by airplug to find the
concerned local link. Locally, the application names must
be unique. The keyword ALL designates all the local appli-
cations.

Since the Airplug architecture can integrate any protocol,
it does not require IP. Hence the host names cannot rely
on IPv6 addresses. In fact, designing a host by a network
address is not efficient in a highly mobile network [18] be-
cause this is not a durable information. Moreover, working
with the neighbor’s name (ID, pseudonym...) could be costly
when the neighborhoods are very unstable.

Based on these considerations, the Airplug architecture im-
plements a very simple addressing scheme, well adapted to
opportunistic networks. A message can be sent to an appli-
cation i) on the local host (LCH), ii) on the other hosts in the
vicinity by means of wireless interfaces (AIR) or iii) on both
(ALL).

A fourth mode can be used when a discovering service allows
to detect the names of the neighbor hosts. In this case, a
neighbor name can be used instead of one of the three key-
words LCH, AIR, ALL. If an instance of airplug receives a mes-
sage addressed to another node, it will discard the message.
Note however that many applications do not require such a
service. Moreover the conditional transmissions [18] allow to
designate the relay and destination nodes by means of con-
ditions (eg. nodes behind the sender). This multi-hop com-
munication strategy is well adapted to dynamic networks:
it allows to perform one-to-many communications (the most
used communication scheme [20] in VANET network) with-
out knowing the identity of the nodes.

To conclude, a process is addressed by a couple (APP,HST),
where APP is either the name of an application or the key-
words ALL or CTL (used in certain cases, see under) and HST is
either the keywords LCH, AIR, ALL, or the name of a neighbor
node.

Communication primitives. With this addressing, a mes-
sage can be addressed to one or several applications locally
or remotely through a single primitive denoted by SND (for
“send”). However an application cannot receive the messages

addressed to several applications nor received by AIR until it
has notified airplug for such a subscription. An applications
can then control its receptions. This increases the robust-
ness by avoiding any cascading problem in case of bogus
application. In practice, this allows to test and debug new
applications while simultaneously performing useful exper-
iments with already tested applications. The subscriptions
are notified to airplug with the BEG and END actions (for re-
spectively the “beginning” and the “end”). The airplug pro-
gram manages the applications subscriptions through some
lists. An application can subscribe to a specific application
or to all (ALL), either locally (LCH) or remotely (AIR). It is
also possible to subscribe to any control information (CTL).

With such a communication scheme, it is possible to imple-
ment the pull mode (request/answer) as well as some push
modes. Indeed, using the ALL keyword, an application will
send some messages to all the applications that subscribed
to its messages. Such sending can be done either periodi-
cally (eg. GPS program) or when an event occurs such as
the change of a value (eg. visibility distance). The sending
mode described in the wireadmin OSGi package can then
be implemented with airplug (sufficient variation, thresh-
old, hysteresis...).

Message formats. Basically, a message is composed of the
action field, the address field, the control field and the pay-
load field. However the message format depends on the kind
of communication, either local or remote (Figures 3 and 4).

The action field can contain SND, BEG or END. Since the sub-
scriptions concern only local communication, the action field
is only present in local messages.

The address field contains one address (APP,HST) for the lo-
cal communications and two for the remote communications.
Indeed, a distant communication concerns several instances
of the airplug program, and is done on the network through
a socket. Since such a communication is generally performed
by broadcasting in the neighborhood, the message contains
the addresses of the sending and the receiving applications.
To the contrary, a local communication concerns airplug and
one of its son processes. It is done by writing and reading
on a local link, which is a connected communication link. In
this case, a single couple (APP,HST) is sufficient because the
sender is known by the receiver. For a message sent on the
local link by an application, it is used to describe the des-
tination (sending action SND) or the subscribed application
(subscribing action). For a message sent on the local link by
airplug, it contains the sending application.

The control field is used for piggybacking purpose, to send
some optional data with the messages such as identity, geo-
graphic position etc. Any application as well as airplug itself
can be interested by the data in this field, to the contrary
of the payload field. The applications can subscribe to the
control data by using the CTL keyword instead of the name
of an application.

The payload field is application dependent and contain the
data really exchanged between the processes.



action application host control payload
SND LCH
BEG AIR
END ALL

hostname

Figure 3: Format of a message for a local communi-
cation through a local link.

appl. host appl. host control payload
sending sending AIR

appl. hostname ALL
(if any) hostname

Figure 4: Format of a message for a remote commu-
nication between two hosts through sockets.

The messages are sent in plain text format. This allows hu-
man reading and eases the debugging. Moreover this allows
to use the applications in standalone mode (in this case, the
applications read an write from the terminal). When neces-
sary, the payload can be encoded using an efficient algorithm
such as [15]. For optimization purpose, an optimized mode
allows the transmission of binary payloads.

The different fields are separated by a character given at
the beginning of the message; this character should not be
present in the fields except the last, which is application-
dependent (payload). This permits to use variable length
fields, which is well adapted to the Airplug named-based
addressing scheme (APP,HST). For optimization purpose, an
optimized mode allows to use a prefix of the names instead
of the complete names (the length of the prefix has to be
precised regarding the number of applications).

4. EVALUATION OF THE ARCHITECTURE
4.1 Implementation
In order to evaluate the Airplug architecture on real sce-
narios, a prototype of the core program as well as a set of
applications has been implemented. The core program has
been written in C under Linux but is intended to work on
any POSIX operating systems. A careful attention has been
paid on the robustness. The program – named apg – relies
only on the standard libc library and is compiled with gcc.
The executable is less than 40 Ko. The source code has less
than 3300 lines for 177 Ko. This shows the lightness and the
portability of the framework.

The plugged processes to be created and the plugged in-
terfaces to be configured have to be given as arguments
of apg. The plugged processes are launched using fork

and exec. The local links are implemented with pipes.
Inter-applications exchanges are done with messages-based
asynchronous communications. They require two write and
two read for local communications (through pipes) and one
more write and read for remote communications (through
sockets).

With the Airplug architecture, any language can be used
to write the applications. Thanks to this characteristic, we
developed most of our applications with Tcl/Tk in order
to share code with Network Simulator [23]. These applica-

tions have been designed with an event-oriented program-
ming (ie. actions are done only when an event occurs),
which is well adapted to distributed applications. The stan-
dard input is configured in such a way that a reception on
stdin (data sent by apg) is an event. Among the tested
applications, we may quote: GPS reading, camera reading,
neighborhood discovering, file transfer, instant messaging,
distributed games, road visibility foreseeing, convoy detec-
tion, traffic road characterization, alert diffusion, conditional
transmissions, VANET optimized broadcasting, streaming
transfer, end-to-end delay and bandwidth measurement for
multi-hops communications...

The discovering service can run either standalone or by pig-
gybacking.

The conditional transmissions are an example of VANET
specific protocol, which has been implemented in user space
in a plugged process named HOP (Figure 2). A message is
sent with two conditions, CUP and CFW for upward and
forward respectively. At the reception, the message is trans-
mit to the local application if CUP is true and it is forwarded
to the neighbors if CFW is true. The CUP condition defines
the destination nodes and the CFW condition defines the
relay nodes. By evaluating the conditions at the message
reception, this communication strategy appears much more
adapted to dynamic networks than classical ones [18]. When
an application want to use this routing scheme, it addresses
its message and the CUP and CFW conditions to the HOP

application through apg. Then HOP will add some control
data before sending the messages to the neighbors via apg.
Reciprocally, when apg receives a message addressed to HOP

from a network interface, it transmits it to the local HOP in-
stance, which will decide whether it will resend the message
to the network and/or to a local application (depending on
the CUP and CFW conditions).

We used yEnc encodage [15] for streaming transfers in plain
text messages, with an overhead of 3%.

4.2 How to design applications

Data flow. While the Airplug architecture allows many more
varieties of applications construction, we basically distin-
guish four classes of applications, sorted by their data flow.

The application of the first class are the simplest. They pro-
duce a local output only, on the basis of a local program, a
local file or a local device (sensor, camera, GPS...). They
generally broadcast their output locally (ALL,LCH). Exam-
ples are GPS reading and image capture... The second class
of applications consume local data produced by the applica-
tions of the first or second class. They are used to perform
some computations on data produced by class one applica-
tions, or for aggregating these data. They are also used to
produce more long time analysis by storing the data during
a given period (eg. averages). They send their data lo-
cally, either on request or by broadcast. Examples are traf-
fic road characterization, visibility distance computation...
The third class of applications is a special case of class two
applications which collect or send some data by air. How-
ever they do not implement a distributed algorithm. An ex-
ample is the neighborhood discovering service, file transfer,



road visibility foreseeing... Finally, the fourth class of ap-
plications is composed of distributed applications. They are
built with one instance per host which cooperate to achieve
a global goal, that defines the distributed applications. Ex-
amples are convoy detections, instant messaging, distributed
games...

Applications that lead to some loops in their data flow should
be designed carefully to ensure their robustness and stability.
Distributed applications should be designed with attention:
proving their correctness when running in a VANET – a
kind of asynchronous failure-prone wireless network – may
be hard.

Example. Let suppose that a discovering service DVS has
to be implemented on the top of apg. It is composed of
one instance of DVS per mobile nodes, that send periodically
some beacon messages (Figure 5).

To receive the data from the GPS, on each host, the DVS

application subscribes to the local GPS applications by writ-
ing to their standard output the message _BEG_GPS_LCH_-

_-. Here, the separator field character is _. To receive the
beacon messages from the remote instances of DVS, it sub-
scribes by writing _BEG_DVS_AIR_-_ to stdin. These mes-
sages are received and interpreted by the local apg program.
On each host, the GPS application pushes its data every sec-
ond by writing the messages _SND_ALL_LCH_-_gpsdata to its
standard output. When receiving such messages, the local
apg programs write the message _SND_GPS_LCH_-_gpsdata

to the pipes of the subscribed local applications (includ-
ing DVS). To send the beacon messages, a DVS application
writes the message _SND_DVS_AIR_-_beacondata to its stan-
dard output. The local apg program will then broadcast
the message _DVS_hostname_DVS_AIR_-_beacondata in the
neighborhood. All apg programs in the vicinity will receive
this message and will write the message _SND_DVS_AIR_-

_beacondata to the subscribed application (including the lo-
cal DVS instances). Hence, the DVS application can exchange
some data that include the local GPS positions. When an-
other application requires the bandwidth, these data can
be sent in the control field of the messages (piggybacking).
Hence, the DVS application should also subscribe to the CTL

field by writing _BEG_CTL_AIR_-_ on its standard output.

Note that, thanks to the standard input/output based com-
munication scheme, the DVS application can simply be tested
standalone by typing on the command line: DVS | DVS.

4.3 Experiments
Our implementation of the Airplug architecture has been
designed for the experimental study of highly dynamic net-
works such as VANETs. We would like to test on the road
our theoretical results (routing, embedded distributed algo-
rithms...), as well as to guide our further studies by inputs
from experiments. For this purpose, a simple embedded
platform has been used [17]; it is composed of industrial
PCs, GPS and WiFi antenna (Figure 6). The operating
system is Debian 3.1.

We performed various tests on the road with up to six ve-
hicles. The different applications were able to run simulta-
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Figure 5: Messages exchanged for the discovering
service DVS.

Figure 6: Embedded hardware for the Airplug ar-
chitecture evaluation.

neously. The variety of these applications shows that the
Airplug architecture allows to design a very large set of ITS
applications.

5. CONCLUSION
Among all the ITS open questions, the embedded software
architectures specification is currently a hot topic, and one
of the crucial open issues. Using existing frameworks and
protocols may ease the launch of the ITS applications busi-
ness. But not all of them may fit with the applications
prerequisite on highly dynamic networks.

In this paper, we analyzed the software architecture require-
ments. Due to the open research issues, a light open archi-
tecture seems necessary in order to be able to adapt to any
further improvement, solution or... problem that may arise
in such yet unknown networks. Standardizing to much fea-
tures may indeed be a drawback in this new field.



We then defined a light software architecture called Airplug.
It allows to implement all the framework stuff in a single pro-
cess. This ensures the independence with the operating sys-
tem and avoid any programming constraints on the applica-
tion development. Resource management and tasks schedul-
ing (including real time management) are delegated to the
operating system. Applications are implemented in sepa-
rate processes to increase robustness. Inter-process commu-
nication relies only on standard input and output. By this
way, applications can be written with any language. More-
over already developed applications can easily be integrated.
Existing protocols stacks can be used but the integration
of new protocols is facilitated. While remaining compati-
ble with existing addressing scheme, the architecture does
not require IP and proposes a new addressing scheme well
adapted to opportunistic networks.

In order to evaluate this software architecture, we imple-
mented on Linux. This leads to a very light framework. A
large set of applications have been developed on top of this
framework. They have been tested all together during real
experiment on the road. These tests demonstrate the inter-
est of the Airplug architecture. As a conclusion, we think
that ITS applications could take benefit of a light and effi-
cient framework.

We plan to complete this study by measuring the sending
latency at the application level and the CPU load when
many applications run... Comparisons with other frame-
works would be interesting. Note that since the framework
is light, good performances are expected. We showed here
that the lightness of the framework is not a drawback for
writing complex application.

Airplug is currently used for studies regarding the context
aware optimizations by dynamically reordering the local links.
Future works concern the study of distributed algorithms
over dynamic networks and their evaluation in real situa-
tions. An emulation mode is under development. It will
allow to replay the real experiences in laboratory.
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